Bioinformatics Toolbox™
User's Guide

MATLAB

R2020a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ User's Guide
© COPYRIGHT 2003-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2003
June 2004
November 2004
March 2005
May 2005
September 2005
November 2005
March 2006
May 2006
September 2006
March 2007
April 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 13SP1+)
Revised for Version 1.1 (Release 14)
Revised for Version 2.0 (Release 14SP1+)
Revised for Version 2.0.1 (Release 14SP2)
Revised for Version 2.1 (Release 14SP2+)
Revised for Version 2.1.1 (Release 14SP3)
Revised for Version 2.2 (Release 14SP3+)
Revised for Version 2.2.1 (Release 2006a)
Revised for Version 2.3 (Release 2006a+)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007a+)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 3.6 (Release 2010b)
Revised for Version 3.7 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 4.3.1 (Release 2013b)
Revised for Version 4.4 (Release 2014a)
Revised for Version 4.5 (Release 2014b)
Revised for Version 4.5.1 (Release 2015a)
Revised for Version 4.5.2 (Release 2015b)
Revised for Version 4.6 (Release 2016a)
Updated for Version 4.7 (Release 2016b)
Updated for Version 4.8 (Release 2017a)
Updated for Version 4.9 (Release 2017b)
Updated for Version 4.10 (Release 2018a)
Updated for Version 4.11 (Release 2018b)
Updated for Version 4.12 (Release 2019a)
Updated for Version 4.13 (Release 2019b)
Updated for Version 4.14 (Release 2020a)

Contents

Getting Started

1]

Bioinformatics Toolbox Product Description 1-2
Key Features e e 1-2
Product OVerview e 1-3
Features ... o e 1-3
Expected USers oo e e 1-4
Data Formats and Databases 1-5
Sequence Alignments 1-7
Sequence Utilities and Statistics 1-8
Protein Property Analysis 1-9
Phylogenetic Analysis 1-10
Microarray Data Analysis Tools 1-11
Microarray Data Storage i 1-12
Mass Spectrometry Data Analysis 1-13
Graph Theory Functions 1-15
Graph Visualization 1-16
Statistical Learning and Visualization 1-17
Prototyping and Development Environment 1-18
Data Visualization 1-19
Exchange Bioinformatics Data Between Excel and MATLAB 1-20
Using Excel and MATLAB Together 1-20
About the Example 1-20
Before Running the Example, 1-20
Running the Example for the Entire Data Set 1-21
Editing Formulas to Run the Example on a Subset of the Data 1-22
Using the Spreadsheet Link product to Interact With the Data in MATLAB
... 1-23

Get Information from Web Database 1-26
What Are get Functions? i 1-26
Creating the getpubmed Function 1-26

High-Throughput Sequence Analysis

2|

Work with Next-Generation SequencingData
OVETVIBW . .ttt e e e e e
What Files Can YOu ACCESS?ttt
Before YouBegin
Create a BioIndexedFile Object to Access Your Source File
Determine the Number of Entries Indexed By a BioIndexedFile Object . . .
Retrieve Entries from Your Source File
Read Entries from Your Source File

NNNNNMNNNDN

BAWOONNN

Manage Sequence Read Datain Objects 2-6
OVEIVIEW . . . o 2-6
Represent Sequence and Quality Data in a BioRead Object 2-7
Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap

Object .« .o 2-8
Retrieve Information from a BioRead or BioMap Object 2-10
Set Information in a BioRead or BioMap Object 2-12
Determine Coverage of a Reference Sequence 2-12
Construct Sequence Alignments to a Reference Sequence 2-13
Filter Read Sequences Using SAMFlags 2-14
Store and Manage Feature Annotations in Objects 2-16
Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Object ..o 2-16
Construct an Annotation Object 2-16
Retrieve General Information from an Annotation Object 2-16
Access Data in an Annotation Object 2-17
Use Feature Annotations with Sequence Read Data 2-18
Visualize and Investigate Sequence Read Alignments 2-21
When to Use the NGS Browser to Visualize and Investigate Data 2-21
Openthe NGS Browserttt e e 2-21
Import Data into the NGS Browser 2-23
Zoom and Pan to a Specific Region of the Alignment 2-25
View Coverage of the Reference Sequence 2-25
View the Pileup View of Short Reads 2-26
Compare Alignments of Multiple DataSets 2-26
View Location, Quality Scores, and Mapping Information 2-27
FlagReads e e 2-28
Evaluate and Flag Mismatches 2-28
View Insertions and Deletions 2-29
View Feature Annotations i, 2-29
Print and Export the Browser Image 2-30
Count Features from NGSReads, 2-31

vi Contents

Identifying Differentially Expressed Genes from RNA-Seq Data

Visualize NGS Data Using Genomics Viewer App
Openthe App

Add Tracks by ImportingData

Visualize Single Nucleotide Variation in Cytochrome P450

Sequence Analysis

3|

Exploring a Nucleotide Sequence Using Command Line

Overviewof Example
Searching the Web for Sequence Information
Reading Sequence Information from the Web
Determining Nucleotide Composition

Determining Codon Composition
Open Reading Frames
Amino Acid Conversion and Composition

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Overview of the Sequence Viewer

Importing a Sequence into the Sequence Viewer . . .

Viewing Nucleotide Sequence Information
Searching forWords

Exploring Open Reading Frames

Closing the Sequence Viewer

Explore a Protein Sequence Using the Sequence Viewer App

Overview of the Sequence Viewer
Viewing Amino Acid Sequence Statistics
Closing the Sequence Viewer
References

Compare Sequences Using Sequence Alignment Algorithms

Overview of Example

Find a Model Organismto Study

Retrieve Sequence Information from a Public Database

Search a Public Database for Related Genes
Locate Protein Coding Sequences

Compare Amino Acid Sequences

View and Align Multiple Sequences
Overview of the Sequence Alignment App

Visualize Multiple Sequence Alignment

Adjust Sequence Alignments Manually
Rearrange Rows

Generate Phylogenetic Tree from Aligned Sequences

o 1
W= ROUIRARNNDN

w W

w W
(e
w1 Ul

3-15
3-17
3-19
3-22
3-25

3-26
3-26
3-26
3-28
3-29

3-30
3-30
3-30
3-31
3-33
3-34
3-36

3-43
3-43
3-43
3-44
3-52
3-54

viii

Contents

Microarray Analysis

4

Managing Gene Expression Data in Objects

Representing Expression Data Values in DataMatrix Objects
Overview of DataMatrix Objects
Constructing DataMatrix Objects
Getting and Setting Properties of a DataMatrix Object
Accessing Data in DataMatrix Objects

Representing Expression Data Values in ExptData Objects
Overview of ExptData Objects i,
Constructing ExptData Objects
Using Properties of an ExptData Object
Using Methods of an ExptData Object
References i

Representing Sample and Feature Metadata in MetaData Objects
Overview of MetaData Objects
Constructing MetaData Objects
Using Properties of a MetaData Object
Using Methods of a MetaData Object

Representing Experiment Information in a MIAME Object
Overview of MIAME Objects
Constructing MIAME Objects,
Using Properties of a MIAME Object
Using Methods of a MIAME Object

Representing All Data in an ExpressionSet Object
Overview of ExpressionSet Objects
Constructing ExpressionSet Objects
Using Properties of an ExpressionSet Object
Using Methods of an ExpressionSet Object

Visualizing Microarray Images0iiueurn.
Overview of the Mouse Example
Exploring the Microarray Data Set
Spatial Images of MicroarrayData
Statistics of the Microarrays,
Scatter Plots of Microarray Data

S|

Using the Phylogenetic Tree App
Overview of the Phylogenetic Tree App oo,
Opening the Phylogenetic Tree App oo it i i
File Menu
Tools Menu

WIndow Menut e e

Help Menu

ix

Getting Started

» “Bioinformatics Toolbox Product Description” on page 1-2
* “Product Overview” on page 1-3

* “Data Formats and Databases” on page 1-5

* “Sequence Alignments” on page 1-7

* “Sequence Utilities and Statistics” on page 1-8

* “Protein Property Analysis” on page 1-9

* “Phylogenetic Analysis” on page 1-10

* “Microarray Data Analysis Tools” on page 1-11

* “Microarray Data Storage” on page 1-12

* “Mass Spectrometry Data Analysis” on page 1-13

* “Graph Theory Functions” on page 1-15

* “Graph Visualization” on page 1-16

» “Statistical Learning and Visualization” on page 1-17

* “Prototyping and Development Environment” on page 1-18
* “Data Visualization” on page 1-19

+ “Exchange Bioinformatics Data Between Excel and MATLAB” on page 1-20
* “Get Information from Web Database” on page 1-26

1 Getting Started

Bioinformatics Toolbox Product Description

1-2

Read, analyze, and visualize genomic and proteomic data

Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS),
microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read
genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well
as from online databases such as the NCBI Gene Expression Omnibus and GenBank®. You can explore
and visualize this data with sequence browsers, spatial heatmaps, and clustergrams. The toolbox also
provides statistical techniques for detecting peaks, imputing values for missing data, and selecting
features.

You can combine toolbox functions to support common bioinformatics workflows. You can use ChIP-
Seq data to identify transcription factors; analyze RNA-Seq data to identify differentially expressed
genes; identify copy number variants and SNPs in microarray data; and classify protein profiles using
mass spectrometry data.

Key Features

* Next Generation Sequencing analysis and browser

* Sequence analysis and visualization, including pairwise and multiple sequence alignment and
peak detection

» Microarray data analysis, including reading, filtering, normalizing, and visualization

* Mass spectrometry analysis, including preprocessing, classification, and marker identification
* Phylogenetic tree analysis

* Graph theory functions, including interaction maps, hierarchy plots, and pathways

» Data import from genomic, proteomic, and gene expression files, including SAM, FASTA, CEL, and
CDF and from databases such as NCBI and GenBank

Product Overview

Product Overview

Features

The Bioinformatics Toolbox product extends the MATLAB® environment to provide an integrated
software environment for genome and proteome analysis. Scientists and engineers can answer
questions, solve problems, prototype new algorithms, and build applications for drug discovery and
design, genetic engineering, and biological research. An introduction to these features will help you
to develop a conceptual model for working with the toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you with genome and proteome
analysis. Most functions are implemented in the MATLAB programming language, with the source
available for you to view. This open environment lets you explore and customize the existing toolbox
algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox to create more complex
algorithms and applications. These robust and well-tested functions are the functions that you would
otherwise have to create yourself.

Toolbox features and functions fall within these categories:
* Data formats and databases — Connect to Web-accessible databases containing genomic and

proteomic data. Read and convert between multiple data formats.

* High-throughput sequencing — Gene expression and transcription factor analysis of next-
generation sequencing data, including RNA-Seq and ChIP-Seq.

* Sequence analysis — Determine the statistical characteristics of a sequence, align two
sequences, and multiply align several sequences. Model patterns in biological sequences using
hidden Markov model (HMM) profiles.

+ Phylogenetic analysis — Create and manipulate phylogenetic tree data.

* Microarray data analysis — Read, normalize, and visualize microarray data.

* Mass spectrometry data analysis — Analyze and enhance raw mass spectrometry data.

* Statistical learning — Classify and identify features in data sets with statistical learning tools.

* Programming interface — Use other bioinformatic software (BioPerl and BigJava) within the
MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly important as biology
becomes a more analytical science. The toolbox provides an open environment that you can customize
for development and deployment of the analytical tools you will need.

* Prototype and develop algorithms — Prototype new ideas in an open and extensible
environment. Develop algorithms using efficient string processing and statistical functions, view
the source code for existing functions, and use the code as a template for customizing, improving,
or creating your own functions. See “Prototyping and Development Environment” on page 1-18.

* Visualize data — Visualize sequences and alignments, gene expression data, phylogenetic trees,
mass spectrometry data, protein structure, and relationships between data with interconnected
graphs. See “Data Visualization” on page 1-19.

* Share and deploy applications — Use an interactive GUI builder to develop a custom graphical
front end for your data analysis programs. Create standalone applications that run separately
from the MATLAB environment.

1-3

1 Getting Started

1-4

Expected Users

The Bioinformatics Toolbox product is intended for computational biologists and research scientists
who need to develop new algorithms or implement published ones, visualize results, and create
standalone applications.

* Industry/Professional — Increasingly, drug discovery methods are being supported by
engineering practice. This toolbox supports tool builders who want to create applications for the
biotechnology and pharmaceutical industries.

* Education/Professor/Student — This toolbox is well suited for learning and teaching genome
and proteome analysis techniques. Educators and students can concentrate on bioinformatic
algorithms instead of programming basic functions such as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended to be a complete set of
tools for scientists to analyze their biological data. However, the MATLAB environment is ideal for
rapidly designing and prototyping the tools you need.

Data Formats and Databases

Data Formats and Databases

The Bioinformatics Toolbox lets you access many of the databases on the web and other online data
repositories. It lets you copy data into the MATLAB workspace, and read and write to files with
standard bioinformatic formats. It also reads many common genome file formats so that you do not
have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the Web and copy sequence
and gene expression information into the MATLAB environment.

The sequence databases currently supported are GenBank (getgenbank), GenPept (getgenpept),
European Molecular Biology Laboratory (EMBL) (getembl), and Protein Data Bank (PDB) (getpdb).
You can also access data from the NCBI Gene Expression Omnibus (GEQO) Web site by using a single
function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model profiles (gethmmprof),
and phylogenetic tree data (gethmmtree) from the PFAM database.

Gene Ontology database — Load the database from the Web into a gene ontology object (geneont).
Select sections of the ontology with methods for the geneont object (getancestors (geneont),
getdescendants (geneont), getmatrix (geneont), getrelatives (geneont)), and
manipulate data with utility functions (goannotread, num2goid).

Read data from instruments — Read data generated from gene sequencing instruments (scfread,
joinseq, traceplot), mass spectrometers (jcampread), and Agilent® microarray scanners
(agferead).

Reading data formats — The toolbox provides a number of functions for reading data from common
bioinformatic file formats.

* Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL (emblread), PDB
(pdbread), and FASTA (fastaread)

* Multiply aligned sequences: ClustalW and GCG formats (multialignread)

* Gene expression data from microarrays: Gene Expression Omnibus (GEO) data (geosoftread),
GenePix® data in GPR and GAL files (gprread, galread), SPOT data (sptread), Affymetrix®
GeneChip® data (affyread), and ImaGene® results files (imageneread)

* Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

Writing data formats — The functions for getting data from the Web include the option to save the
data to a file. However, there is a function to write data to a file using the FASTA format
(fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get the results from a search
(getblast) and read results from a previously saved BLAST formatted report file (blastread).

The MATLAB environment has built-in support for other industry-standard file formats including
Microsoft® Excel® and comma-separated-value (CSV) files. Additional functions perform ASCII and
low-level binary I/O, allowing you to develop custom functions for working with any data format.

1-5

1 Getting Started

1-6

See Also

More About

“High-Throughput Sequencing”
“Microarray Analysis”

“Sequence Analysis”

“Structural Analysis”

“Mass Spectrometry and Bioanalytics”

Sequence Alignments

Sequence Alignments

You can select from a list of analysis methods to compare nucleotide or amino acid sequences using
pairwise or multiple sequence alignment functions.

Pairwise sequence alignment — Efficient implementations of standard algorithms such as the
Needleman-Wunsch (nwalign) and Smith-Waterman (swalign) algorithms for pairwise sequence
alignment. The toolbox also includes standard scoring matrices such as the PAM and BLOSUM
families of matrices (blosum, dayhoff, gonnet, nuc44, pam). Visualize sequence similarities with
seqdotplot and sequence alignment results with showalignment.

Multiple sequence alignment — Functions for multiple sequence alignment (multialign,
profalign) and functions that support multiple sequences (multialignread, fastaread,
showalignment). There is also a graphical interface (seqalignviewer) for viewing the results of a
multiple sequence alignment and manually making adjustment.

Multiple sequence profiles — Implementations for multiple alignment and profile hidden Markov
model algorithms (gethmmprof, gethmmalignment, gethmmtree, pfamhmmread, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for commonly used biological codes
(aminolookup, baselookup, geneticcode, revgeneticcode).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-8
. “Sequence Analysis”
. “Data Formats and Databases” on page 1-5

1-7

1 Getting Started

Sequence Utilities and Statistics

You can manipulate and analyze your sequences to gain a deeper understanding of the physical,
chemical, and biological characteristics of your data. Use a graphical user interface (GUI) with many
of the sequence functions in the toolbox (seqviewer).

Sequence conversion and manipulation — The toolbox provides routines for common operations,
such as converting DNA or RNA sequences to amino acid sequences, that are basic to working with
nucleic acid and protein sequences (aa2int, aa2nt, dna2rna, rna2dna, int2aa, int2nt, nt2aa,
nt2int, seqcomplement, seqrcomplement, seqreverse).

You can manipulate your sequence by performing an in silico digestion with restriction endonucleases
(restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence (aacount, basecount,
codoncount, dimercount, nmercount, ntdensity, codonbias, cpgisland, oligoprop), search
for specific patterns within a sequence (seqshowwords, seqwordcount), or search for open reading
frames (seqshoworfs). In addition, you can create random sequences for test cases (randseq).

Sequence utilities — Determine a consensus sequence from a set of multiply aligned amino acid,
nucleotide sequences (seqconsensus, or a sequence profile (seqprofile). Format a sequence for
display (seqdisp) or graphically show a sequence alignment with frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with regular expressions (regexp,
seq2regexp) to look for specific patterns in a sequence and search through a library for string
matches (segmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for palindromes

(palindromes).

See Also

More About

. “Sequence Alignments” on page 1-7

. “Sequence Analysis”

. “Protein and Amino Acid Sequence Analysis”
. “Data Formats and Databases” on page 1-5

1-8

Protein Property Analysis

Protein Property Analysis

You can use a collection of protein analysis methods to extract information from your data. You can
determine protein characteristics and simulate enzyme cleavage reactions. The toolbox provides
functions to calculate various properties of a protein sequence, such as the atomic composition
(atomiccomp), molecular weight (molweight), and isoelectric point (isoelectric). You can cleave
a protein with an enzyme (cleave, rebasecuts) and create distance and Ramachandran plots for
PDB data (pdbdistplot, ramachandran). The toolbox contains a graphical user interface for
protein analysis (proteinplot) and plotting 3-D protein and other molecular structures with
information from molecule model files, such as PDB files (molviewer).

Amino acid sequence utilities — Calculate amino acid statistics for a sequence (aacount) and get
information about character codes (aminolookup).

See Also

More About

. “Protein and Amino Acid Sequence Analysis”
. “Structural Analysis”

1-9

1 Getting Started

Phylogenetic Analysis

1-10

Phylogenetic analysis is the process you use to determine the evolutionary relationships between
organisms. The results of an analysis can be drawn in a hierarchical diagram called a cladogram or
phylogram (phylogenetic tree). The branches in a tree are based on the hypothesized evolutionary
relationships (phylogeny) between organisms. Each member in a branch, also known as a
monophyletic group, is assumed to be descended from a common ancestor. Originally, phylogenetic
trees were created using morphology, but now, determining evolutionary relationships includes
matching patterns in nucleic acid and protein sequences. The Bioinformatics Toolbox provides the
following data structure and functions for phylogenetic analysis.

Phylogenetic tree data — Read and write Newick-formatted tree files (phytreeread,
phytreewrite) into the MATLAB Workspace as phylogenetic tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between biological sequences
(segpdist), estimate the substitution rates (dnds, dndsml), build a phylogenetic tree from pairwise
distances (seqlinkage, seqneighjoin, reroot), and view the tree in an interactive GUI that
allows you to view, edit, and explore the data (phytreeviewer or view). This GUI also allows you to
prune branches, reorder, rename, and explore distances.

Phylogenetic tree object methods — You can access the functionality of the phytreeviewer user
interface using methods for a phylogenetic tree object (phytree). Get property values (get) and
node names (getbyname). Calculate the patristic distances between pairs of leaf nodes (pdist,
weights) and draw a phylogenetic tree object in a MATLAB Figure window as a phylogram,
cladogram, or radial treeplot (plot). Manipulate tree data by selecting branches and leaves using a
specified criterion (select, subtree) and removing nodes (prune). Compare trees (getcanonical)
and use Newick-formatted strings (getnewickstr).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-8
. “Sequence Analysis”

Microarray Data Analysis Tools

Microarray Data Analysis Tools

The MATLAB environment is widely used for microarray data analysis, including reading, filtering,
normalizing, and visualizing microarray data. However, the standard normalization and visualization
tools that scientists use can be difficult to implement. The toolbox includes these standard functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot data (probesetplot),
ImaGene results files (imageneread), SPOT files (sptread) and Agilent microarray scanner files
(agferead). Read GenePix GPR files (gprread) and GAL files (galread). Get Gene Expression

Omnibus (GEO) data from the Web (getgeodata) and read GEO data from files (geosoftread).

A utility function (magetfield) extracts data from one of the microarray reader functions (gprread,
agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a number of methods for
normalizing microarray data, such as lowess normalization (nalowess) and mean normalization
(manorm), or across multiple arrays (quantilenorm). You can use filtering functions to clean raw
data before analysis (geneentropyfilter, genelowvalfilter, generangefilter,
genevarfilter), and calculate the range and variance of values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing microarray data. These
routines include spatial plots of microarray data (maimage, redgreencmap), box plots (maboxplot),
loglog plots (maloglog), and intensity-ratio plots (mairplot). You can also view clustered expression
profiles (clustergram, redgreencmap). You can create 2-D scatter plots of principal components
from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work with Affymetrix GeneChip data
sets. Get library information for a probe (probelibraryinfo), gene information from a probe set
(probesetlookup), and probe set values from CEL and CDF information (probesetvalues). Show
probe set information from NetAffx™ Analysis Center (probesetlink) and plot probe set values
(probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and to visualize the results, and

you can view your data through statistical visualizations such as dendrograms, classification, and
regression trees.

See Also

More About

. “Microarray Data Storage” on page 1-12
. “Microarray Analysis”

1-11

1 Getting Started

Microarray Data Storage

1-12

The Bioinformatics Toolbox includes functions, objects, and methods for creating, storing, and
accessing microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to encapsulate
data and metadata from a microarray experiment. A DataMatrix object stores experimental data in a
matrix, with rows typically corresponding to gene names or probe identifiers, and columns typically
corresponding to sample identifiers. A DataMatrix object also stores metadata, including the gene
names or probe identifiers (as the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way you reference
data in a MATLAB array, that is, by using linear or logical indexing. Alternately, you can reference this
experimental data by gene (probe) identifiers and sample identifiers. Indexing by these identifiers lets
you quickly and conveniently access subsets of the data without having to maintain additional index
arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects by means of
methods. These methods let you modify, combine, compare, analyze, plot, and access information
from DataMatrix objects. Additionally, you can easily extend the functionality by using general
element-wise functions, dmarrayfun and dmbsxfun, and by manually accessing the properties of a
DataMatrix object.

Note For more information on creating and using DataMatrix objects, see “Representing Expression
Data Values in DataMatrix Objects” on page 4-5.

See Also

More About

. “Microarray Data Analysis Tools” on page 1-11
. “Microarray Analysis”

Mass Spectrometry Data Analysis

Mass Spectrometry Data Analysis

The mass spectrometry functions preprocess and classify raw data from SELDI-TOF and MALDI-TOF
spectrometers and use statistical learning functions to identify patterns.

Reading raw data — Load raw mass/charge and ion intensity data from comma-separated-value
(CSV) files, or read a JCAMP-DX-formatted file with mass spectrometry data (j campread) into the
MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower resolution (msresample)
where the extra data points are not needed. Correct the baseline (nsbackadj). Align a spectrum to a
set of reference masses (msalign) and visually verify the alignment (msheatmap). Normalize the
area between spectra for comparing (msnorm), and filter out noise (mslowess and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass peaks and further
analysis.

The following graphic illustrates the roles of the various mass spectrometry functions in the toolbox.

1-13

1 Getting Started

1-14

mzXML File
mzxmlread
mzXML Structure
mzxmlzpea}cs
L J
Peak Lists msdotplot ot
(Centroided Data)
mspeaks msppresample
i b
Raw Reconstructed i : Plot
Data Data
SemicontinuousSignal MSVIeWer | Mass Spectra
Viewer

@

See Also

More About

“Mass Spectrometry and Bioanalytics”

“Data Formats and Databases” on page 1-5

Graph Theory Functions

Graph Theory Functions

Graph theory functions in the Bioinformatics Toolbox apply basic graph theory algorithms to sparse
matrices. A sparse matrix represents a graph, any nonzero entries in the matrix represent the edges
of the graph, and the values of these entries represent the associated weight (cost, distance, length,
or capacity) of the edge. Graph algorithms that use the weight information will cancel the edge if a
NaN or an Inf is found. Graph algorithms that do not use the weight information will consider the
edge if a NaN or an Inf is found, because these algorithms look only at the connectivity described by
the sparse matrix and not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

* Directed Graph — Sparse matrix, either double real or logical. Row (column) index indicates the
source (target) of the edge. Self-loops (values in the diagonal) are allowed, although most of the
algorithms ignore these values.

* Undirected Graph — Lower triangle of a sparse matrix, either double real or logical. An
algorithm expecting an undirected graph ignores values stored in the upper triangle of the sparse
matrix and values in the diagonal.

* Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical, with zero values in the
diagonal. While a zero-valued diagonal is a requirement of a DAG, it does not guarantee a DAG. An
algorithm expecting a DAG will not test for cycles because this will add unwanted complexity.

* Spanning Tree — Undirected graph with no cycles and with one connected component.

There are no attributes attached to the graphs; sparse matrices representing all four types of graphs
can be passed to any graph algorithm. All functions will return an error on nonsquare sparse
matrices.

Graph algorithms do not pretest for graph properties because such tests can introduce a time penalty.
For example, there is an efficient shortest path algorithm for DAG, however testing if a graph is
acyclic is expensive compared to the algorithm. Therefore, it is important to select a graph theory
function and properties appropriate for the type of the graph represented by your input matrix. If the
algorithm receives a graph type that differs from what it expects, it will either:

* Return an error when it reaches an inconsistency. For example, if you pass a cyclic graph to the
graphshortestpath function and specify Acyclic as the method property.

* Produce an invalid result. For example, if you pass a directed graph to a function with an
algorithm that expects an undirected graph, it will ignore values in the upper triangle of the
sparse matrix.

The graph theory functions include graphallshortestpaths, graphconncomp, graphisdag,

graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path,
graphshortestpath, graphtopoorder, and graphtraverse.

See Also

More About
. “Graph Visualization” on page 1-16
. “Network Analysis and Visualization”

1-15

1 Getting Started

Graph Visualization

The Bioinformatics Toolbox includes functions, objects, and methods for creating, viewing, and
manipulating graphs such as interactive maps, hierarchy plots, and pathways. This allows you to view
relationships between data.

The object constructor function (biograph) lets you create a biograph object to hold graph data.
Methods of the biograph object let you calculate the position of nodes (dolayout), draw the graph
(view), get handles to the nodes and edges (getnodesbyid and getedgesbynodeid) to further
query information, and find relations between the nodes (getancestors, getdescendants, and
getrelatives). There are also methods that apply basic graph theory algorithms to the biograph
object.

Various properties of a biograph object let you programmatically change the properties of the
rendered graph. You can customize the node representation, for example, drawing pie charts inside
every node (CustomNodeDrawFcn). Or you can associate your own callback functions to nodes and
edges of the graph, for example, opening a Web page with more information about the nodes
(NodeCallback and EdgeCallback).

See Also

More About

. “Graph Theory Functions” on page 1-15
. “Network Analysis and Visualization”

1-16

Statistical Learning and Visualization

Statistical Learning and Visualization

You can classify and identify features in data sets, set up cross-validation experiments, and compare
different classification methods.

The toolbox provides functions that build on the classification and statistical learning tools in the
Statistics and Machine Learning Toolbox™ software (classify, kmeans, fitctree, and
fitrtree).

These functions include imputation tools (knnimpute), and K-nearest neighbor classifiers (fitcknn).

Other functions include set up of cross-validation experiments (crossvalind) and comparison of the
performance of different classification methods (classperf). In addition, there are tools for
selecting diversity and discriminating features (rankfeatures, randfeatures).

1-17

1 Getting Started

Prototyping and Development Environment

1-18

The MATLAB environment lets you prototype and develop algorithms and easily compare alternatives.

Integrated environment — Explore biological data in an environment that integrates
programming and visualization. Create reports and plots with the built-in functions for
mathematics, graphics, and statistics.

Open environment — Access the source code for the toolbox functions. The toolbox includes
many of the basic bioinformatics functions you will need to use, and it includes prototypes for
some of the more advanced functions. Modify these functions to create your own custom solutions.

Interactive programming language — Test your ideas by typing functions that are interpreted
interactively with a language whose basic data element is an array. The arrays do not require
dimensioning and allow you to solve many technical computing problems,

Using matrices for sequences or groups of sequences allows you to work efficiently and not worry
about writing loops or other programming controls.

Programming tools — Use a visual debugger for algorithm development and refinement and an
algorithm performance profiler to accelerate development.

Data Visualization

Data Visualization

You can visually compare pairwise sequence alignments, multiply aligned sequences, gene expression
data from microarrays, and plot nucleic acid and protein characteristics. The 2-D and volume
visualization features let you create custom graphical representations of multidimensional data sets.
You can also create montages and overlays, and export finished graphics to an Adobe® PostScript®
image file or copy directly into Microsoft PowerPoint®.

1-19

1 Getting Started

Exchange Bioinformatics Data Between Excel and MATLAB

1-20

In this section...

“Using Excel and MATLAB Together” on page 1-20

“About the Example” on page 1-20

“Before Running the Example” on page 1-20

“Running the Example for the Entire Data Set” on page 1-21

“Editing Formulas to Run the Example on a Subset of the Data” on page 1-22

“Using the Spreadsheet Link product to Interact With the Data in MATLAB” on page 1-23

Using Excel and MATLAB Together

If you have bioinformatics data in an Excel (2007 or newer) spreadsheet, use Spreadsheet Link to:

» Connect Excel with the MATLAB Workspace to exchange data
* Use MATLAB and Bioinformatics Toolbox computational and visualization functions

About the Example

Note The following example assumes you have Spreadsheet Link software installed on your system.

The Excel file used in the following example contains data from DeRisi, J.L., Iyer, V.R., and Brown, P.O.
(Oct. 24, 1997). Exploring the metabolic and genetic control of gene expression on a genomic scale.
Science 278(5338), 680-686. PMID: 9381177. The data was filtered using the steps described in
“Gene Expression Profile Analysis”.

Before Running the Example
1 Ifnot already done, modify your system path to include the MATLAB root folder as described in
the Spreadsheet Link documentation.

2 Ifnot already done, enable the Spreadsheet Link Add-In as described in “Add-In Setup”
(Spreadsheet Link).

3 Close MATLAB and Excel if they are open.
Start Excel. MATLAB and Spreadsheet Link software automatically start.
5 From Excel, open the following file provided with the Bioinformatics Toolbox software:

matlabroot\toolbox\bioinfo\biodemos\Filtered Yeastdata.xlsm

Note matlabroot is the MATLAB root folder, which is where MATLAB software is installed on
your system.

6 In the Excel software, enable macros. Click the Developer tab, and then select Macro Security
from the Code group. If the Developer tab is not displayed on the Excel ribbon, consult Excel
Help to display it. If you encounter the "Can't find project or library" error, you might need to
update the references in the Visual Basic software. Open Visual Basic by clicking the Developer

Exchange Bioinformatics Data Between Excel and MATLAB

tab and selecting Visual Basic. Then select Tools > References > SpreadsheetLink. If the
MISSING: exclink2007.xlam check box is selected, clear it.

Running the Example for the Entire Data Set

1

In the provided Excel file, note that columns A through H contain data from DeRisi et al. Also
note that cells J5, J6, J7, and J12 contain formulas using Spreadsheet Link functions
MLPutMatrix and MLEvalString.

Tip To view a cell's formula, select the cell, and then view the formula in the formula bar

A atthe top of the Excel window.

Execute the formulas in cells J5, J6, J7, and J12, by selecting the cell, pressing F2, and then
pressing Enter.

Each of the first three cells contains a formula using the Spreadsheet Link function
MLPutMatrix, which creates a MATLAB variable from the data in the spreadsheet. Cell J12
contains a formula using the Spreadsheet Link function MLEvalString, which runs the
Bioinformatics Toolbox clustergram function using the three variables as input. For more
information on adding formulas using Spreadsheet Link functions, see “Create Diagonal Matrix
Using Worksheet Cells” (Spreadsheet Link).

Cells 15, 16, 17 contain formulas that Cell 112 contains a formula that uses
use the MLPutMatrix functionto the MLEvalStringfunctionto
create three MATLAB variables. run the clustergramfunction.

Push the data into|3 MATLAB variables

Y

=]

<== MLPutMatrix("data” B4:HE17)
<== MLPutMatrix("Genes” A4-AB1T)
<== MLPutMatrix("TimeSteps” B3:H3)

o]

[

Run the clustergram command on the data using the 3 variables

L

U|-=== MLEvalString(“clustergram(data, RowlLabels’, Genes,'ColumnLabels’ TimeSteps)"”)

Run the macro function Clustergram on the data using cell ranges

0 |=:== Clustergram(B4:HB17 A4:AB17 B3:H3)

Cell J17 contains a formula that uses
amacro function, Clustergram,
created in Visual Basic Editor.

1-21

1 Getting Started

1-22

3

Note that cell J17 contains a formula using a macro function Clustergram, which was created in
the Visual Basic® Editor. Running this macro does the same as the formulas in cells J5, J6, J7, and
J12. Optionally, view the Clustergram macro function by clicking the Developer tab, and then

clicking the Visual Basic button F‘-_‘::I (If the Developer tab is not on the Excel ribbon, consult
Excel Help to display it.)

For more information on creating macros using Visual Basic Editor, see “Create Diagonal Matrix

Using VBA Macro” (Spreadsheet Link).
Execute the formula in cell J17 to analyze and visualize the data:

a Select cell J17.
b Press F2.
¢ Press Enter.

The macro function Clustergram runs creating three MATLAB variables (data, Genes, and
TimeSteps) and displaying a Clustergram window containing dendrograms and a heat map of

the data.

(4 Clustergram 1
File Tools Desktop Window Help

@ | RR0L 0%

el e

9 hours

0 hours
11.5 hours
13.5 hours
15.5 hours
18.5 hours
20.5 hours.

Editing Formulas to Run the Example on a Subset of the Data

1

Edit the formulas in cells J5 and]J6 to analyze a subset of the data. Do this by editing the
formulas’ cell ranges to include data for only the first 30 genes:

Exchange Bioinformatics Data Between Excel and MATLAB

b

Q N T 9

Select cell J5, and then press F2 to display the formula for editing. Change H617 to H33,

and then press Enter.

[EMLPuthatrizi"data" B4:H3F]

Select cell J6, then press F2 to display the formula for editing. Change A617 to A33, and

then press Enter.

[EMLPutMatrixi" Genes" Ad:A33) |

Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize a subset of the data:

Select cell J5, press F2, and then press Enter.
Select cell J6, press F2, and then press Enter.
Select cell J7, press F2, and then press Enter.
Select cell J12, press F2, and then press Enter.

ry Clustergram 2

File Tools Desktop Window Help

®AR0E| 0B 6

E

-

9 hours
0 hours
11.5 hours

13.5 hours

T%ﬁ?ﬁﬁ

15.5 hours

P ey
REREna®S
B e L Ll i =])
220202002

I
CCANOOA000T

S8
6822250

2
ZH
2

=]
9]

99}

= a0
mwg

BoR82a20
£2202

.
Iz |

YB
YA
YC
S8
YB
YC
YC
YB
YC
YC
¥C
YA
YB
YB
YA
YA

A DO
DQDE

=

Py

==

20.5 hours
18.5 hours

Using the Spreadsheet Link product to Interact With the Data in
MATLAB

Use the MATLAB group on the right side of the Home tab to interact with the data:

1-23

1 Getting Started

o B A
ort & Find &
ilter = Seleck -
19 |\ Start MATLAE

Send data to MATLAE

-

Send named ranges to MATLAR
et data from MATLAE

Run MATLAE command

et MATLAE figure

MATLAE Function YWizard

Preferences
[

For example, create a variable in MATLAB containing a 3-by-7 matrix of the data, plot the data in a
Figure window, and then add the plot to your spreadsheet:

1 Click-drag to select cells B35 through H7.

0.305 0.146 0128 0.444 -0.707 -1.458 -1.935
0.157 0.175 0.467 -0.579 -0.52 -1.279 2125
0.246 0.796 0.334 0.551 1.02 1.646 1.157

From the MATLAB group, select Send data to MATLAB.
Type YAGenes for the variable name, and then click OK.

The variable YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.
From the MATLAB group, select Run MATLAB command.
5 Type plot(YAGenes ') for the command, and then click OK.

A Figure window displays a plot of the data.

Note Make sure you use the ' (transpose) symbol when plotting the data in this step. You need
to transpose the data in YAGenes so that it plots as three genes over seven time intervals.

6 Select cell J20, and then click from the MATLAB group, select Get MATLAB figure.

The figure is added to the spreadsheet.

1-24

Exchange Bioinformatics Data Between Excel and MATLAB

1-25

1 Getting Started

Get Information from Web Database

1-26

In this section...

“What Are get Functions?” on page 1-26
“Creating the getpubmed Function” on page 1-26

What Are get Functions?

Bioinformatics Toolbox includes several get functions that retrieve information from various Web
databases. Additionally, with some basic MATLAB programming skills, you can create your own get
function to retrieve information from a specific Web database.

The following procedure illustrates how to create a function to retrieve information from the NCBI
PubMed database and read the information into a MATLAB structure. The NCBI PubMed database
contains biomedical literature citations and abstracts.

A service of the U.S. National Library

— and the National Instit
NCBI PubN}ed
www.pubmed.gov
All Databases PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
Searcth'ubMed | for| Go | Clear I Advanced Search (beta

[Limits | Previewindex | History | Ciipboard | Details |

About Entrez
Text Version To get started with PubMed, enter one or more search terms.

Entrez PubMed Search terms may be topics, authors or journals.
Overview
Help | FAQ

Tutorials . . N
New/Noteworthy BY M Set up.an automated PubMed update in fewer than
E-Utilities NCB]| five minutes.

PubMed Services 1
Joumals Database a4
MeSH Database -
Single Citation 3

Matcher . . .
Batch Citation Matcher Read the Mv NCBI Help material to explore other options, such as automated updates of

e ArETEm other databases, setting search filters, and highlighting search terms.

. Create a My NCBI account.
. Save your search.

. Your PubMed updates can be e-mailed directly to vou.

Special Queries

LinkQut

My NCBI PubMed is a service of the U.S. National Librarv of Medicine that includes over 17 million citations
from MEDLINE and other life science journals for biomedical articles back to the 1950s. PubMed
includes links to full text articles and other related resources.

Creating the getpubmed Function

The following procedure shows you how to create a function named getpubmed using the MATLAB
Editor. This function will retrieve citation and abstract information from PubMed literature searches
and write the data to a MATLAB structure.

Specifically, this function will take one or more search terms, submit them to the PubMed database
for a search, then return a MATLAB structure or structure array, with each structure containing
information for an article found by the search. The returned information will include a PubMed
identifier, publication date, title, abstract, authors, and citation.

Get Information from Web Database

The function will also include property name-value pairs that let the user of the function limit the
search by publication date and limit the number of records returned. Below is the step-by-step guide
to create the function from the beginning. To see the completed m-file, type edit getpubmed.m.

From MATLAB, open the MATLAB Editor by selecting File > New > Function.
Define the getpubmed function, its input arguments, and return values by typing:

function pmstruct = getpubmed(searchterm,varargin)
% GETPUBMED Search PubMed database & write results to MATLAB structure

3 Add code to do some basic error checking for the required input SEARCHTERM.

% Error checking for required input SEARCHTERM

if(nargin<l)
error(message('bioinfo:getpubmed:NotEnoughInputArguments'));

end

4 Create variables for the two property name-value pairs, and set their default values.

% Set default settings for property name/value pairs,

% 'NUMBEROFRECORDS' and 'DATEOFPUBLICATION'

maxnum = 50; % NUMBEROFRECORDS default is 50

pubdate = ''; % DATEOFPUBLICATION default is an empty string

5 Add code to parse the two property name-value pairs if provided as input.

% Parsing the property name/value pairs
num_argin = numel(varargin);
for n = 1:2:num_argin

arg = varargin{n};

switch lower(arg)

% If NUMBEROFRECORDS is passed, set MAXNUM
case 'numberofrecords'
maxnum = varargin{n+1};

% If DATEOFPUBLICATION is passed, set PUBDATE
case 'dateofpublication'’
pubdate = varargin{n+1};

end
end

6 You access the PubMed database through a search URL, which submits a search term and
options, and then returns the search results in a specified format. This search URL is comprised
of a base URL and defined parameters. Create a variable containing the base URL of the PubMed
database on the NCBI Web site.

% Create base URL for PubMed db site
baseSearchURL = 'https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search’;

7 Create variables to contain five defined parameters that the getpubmed function will use,
namely, db (database), term (search term), report (report type, such as MEDLINE®), format
(format type, such as text), and dispmax (maximum number of records to display).

% Set db parameter to pubmed
dbOpt = '&db=pubmed"’;

%
%

Set term parameter to SEARCHTERM and PUBDATE
(Default PUBDATE is '')

1-27

1 Getting Started

1-28

10

11

12

13

termOpt = ['&term=',searchterm, '+AND+',pubdate];

% Set report parameter to medline
reportOpt = '&report=medline’;

% Set format parameter to text
formatOpt = '&format=text';

% Set dispmax to MAXNUM
% (Default MAXNUM is 50)
max0pt = ['&dispmax=',num2str(maxnum)];

Create a variable containing the search URL from the variables created in the previous steps.

% Create search URL
searchURL = [baseSearchURL,dbOpt,termOpt, reportOpt, formatOpt,max0pt];

Use the urlread function to submit the search URL, retrieve the search results, and return the
results (as text in the MEDLINE report type) in medlineText, a character array.

medlineText = urlread(searchURL);

Use the MATLAB regexp function and regular expressions to parse and extract the information
in medlineText into hits, a cell array, where each cell contains the MEDLINE-formatted text
for one article. The first input is the character array to search, the second input is a search
expression, which tells the regexp function to find all records that start with PMID-, while the
third input, 'match’, tells the regexp function to return the actual records, rather than the
positions of the records.

hits = regexp(medlineText, 'PMID-.*?(?=PMID|</pre>$)"', 'match');
Instantiate the pmstruct structure returned by getpubmed to contain six fields.
pmstruct = struct('PubMedID','"', 'PublicationDate',"'"', 'Title"',"'"',...

'Abstract','', 'Authors','','Citation',"'");
Use the MATLAB regexp function and regular expressions to loop through each article in hits
and extract the PubMed ID, publication date, title, abstract, authors, and citation. Place this
information in the pmstruct structure array.

for n = 1l:numel(hits)
pmstruct(n).PubMedID = regexp(hits{n},'(?<=PMID-).*?(?=\n)', 'match', 'once');

pmstruct(n).PublicationDate = regexp(hits{n},'(?<=DP -).*?(?=\n)', 'match', 'once');
pmstruct(n).Title = regexp(hits{n},'(?<=TI -).*?(?=PG -|AB ~-)',6 'match', 'once');
pmstruct(n).Abstract = regexp(hits{n},'(?<=AB -).*?(?=AD ~-)', 'match', 'once');
pmstruct(n).Authors = regexp(hits{n},'(?<=AU -).*?(?=\n)', 'match');
pmstruct(n).Citation = regexp(hits{n},'(?<=S0 -).*?(?=\n)','match', 'once');

end
Select File > Save As.

When you are done, your file should look similar to the getpubmed.m file included with the
Bioinformatics Toolbox software. The file is located at:

matlabroot\toolbox\bioinfo\biodemos\getpubmed.m

Note The notation matlabroot is the MATLAB root directory, which is the directory where the
MATLAB software is installed on your system.

High-Throughput Sequence Analysis

* “Work with Next-Generation Sequencing Data” on page 2-2

* “Manage Sequence Read Data in Objects” on page 2-6

* “Store and Manage Feature Annotations in Objects” on page 2-16

* “Visualize and Investigate Sequence Read Alignments” on page 2-21

* “Count Features from NGS Reads” on page 2-31

* “Identifying Differentially Expressed Genes from RNA-Seq Data” on page 2-41
* “Visualize NGS Data Using Genomics Viewer App” on page 2-69

2 High-Throughput Sequence Analysis

Work with Next-Generation Sequencing Data

2-2

In this section...

“Overview” on page 2-2

“What Files Can You Access?” on page 2-2

“Before You Begin” on page 2-3

“Create a BiolndexedFile Object to Access Your Source File” on page 2-3
“Determine the Number of Entries Indexed By a BiolndexedFile Object” on page 2-3
“Retrieve Entries from Your Source File” on page 2-4

“Read Entries from Your Source File” on page 2-4

Overview

Many biological experiments produce huge data files that are difficult to access due to their size,
which can cause memory issues when reading the file into the MATLAB Workspace. You can construct
a BioIndexedFile ohject to access the contents of a large text file containing nonuniform size
entries, such as sequences, annotations, and cross-references to data sets. The BioIndexedFile
object lets you quickly and efficiently access this data without loading the source file into memory.

You can use the BioIndexedFile object to access individual entries or a subset of entries when the
source file is too big to fit into memory. You can access entries using indices or keys. You can read and
parse one or more entries using provided interpreters or a custom interpreter function.

Use the BioIndexedFile object in conjunction with your large source file to:

* Access a subset of the entries for validation or further analysis.
» Parse entries using a custom interpreter function.

What Files Can You Access?

You can use the BioIndexedFile object to access large text files.

Your source file can have these application-specific formats:

« FASTA
+ FASTQ
+ SAM

Your source file can also have these general formats:
* Table — Tab-delimited table with multiple columns. Keys can be in any column. Rows with the

same key are considered separate entries.

* Multi-row Table — Tab-delimited table with multiple columns. Keys can be in any column.
Contiguous rows with the same key are considered a single entry. Noncontiguous rows with the
same key are considered separate entries.

+ Flat — Flat file with concatenated entries separated by a character vector, typically //. Within an
entry, the key is separated from the rest of the entry by a white space.

Work with Next-Generation Sequencing Data

Before You Begin

Before constructing a BioIndexedFile object, locate your source file on your hard drive or a local
network.

When you construct a BioIndexedFile object from your source file for the first time, you also
create an auxiliary index file, which by default is saved to the same location as your source file.
However, if your source file is in a read-only location, you can specify a different location to save the
index file.

Tip If you construct a BioIndexedFile object from your source file on subsequent occasions, it
takes advantage of the existing index file, which saves time. However, the index file must be in the
same location or a location specified by the subsequent construction syntax.

Tip If insufficient memory is not an issue when accessing your source file, you may want to try an
appropriate read function, such as genbankread, for importing data from GenBank files. .

Additionally, several read functions such as fastaread, fastqread, samread, and sffread include
a Blockread property, which lets you read a subset of entries from a file, thus saving memory.

Create a BiolndexedFile Object to Access Your Source File

To construct a BioIndexedFile object from a multi-row table file:

1 Create a variable containing the full absolute path of your source file. For your source file, use
the yeastgenes.sgd file, which is included with the Bioinformatics Toolbox software.

sourcefile = which('yeastgenes.sgd');

2 Use the BioIndexedFile constructor function to construct a BioIndexedFile object from the
yeastgenes.sgd source file, which is a multi-row table file. Save the index file in the Current
Folder. Indicate that the source file keys are in column 3. Also, indicate that the header lines in
the source file are prefaced with !, so the constructor ignores them.

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...
'KeyColumn', 3, 'HeaderPrefix','!")

The BioIndexedFile constructor function constructs gene2go0Obj, a BioIndexedFile object,
and also creates an index file with the same name as the source file, but with an IDX extension. It
stores this index file in the Current Folder because we specified this location. However, the
default location for the index file is the same location as the source file.

Caution Do not modify the index file. If you modify it, you can get invalid results. Also, the
constructor function cannot use a modified index file to construct future objects from the
associated source file.

Determine the Number of Entries Indexed By a BiolndexedFile Object

To determine the number of entries indexed by a BioIndexedFile object, use the NumEntries
property of the BioIndexedFile object. For example, for the gene2go0bj object:

gene2goObj.NumEntries

2-3

2 High-Throughput Sequence Analysis

2-4

ans =

6476

Note For a list and description of all properties of a BioIndexedFile object, see BioIndexedFile
class.

Retrieve Entries from Your Source File

Retrieve entries from your source file using either:

* The index of the entry
* The entry key

Retrieve Entries Using Indices

Use the getEntryByIndex method to retrieve a subset of entries from your source file that
correspond to specified indices. For example, retrieve the first 12 entries from the yeastgenes.sgd
source file:

subset entries = getEntryByIndex(gene2goObj, [1:12]);

Retrieve Entries Using Keys

Use the getEntryByKey method to retrieve a subset of entries from your source file that are
associated with specified keys. For example, retrieve all entries with keys of AAC1 and AAD10 from

the yeastgenes. sgd source file:

subset entries = getEntryByKey(gene2goObj, {'AAC1' 'AAD10'});
The output subset _entries is a character vector of concatenated entries. Because the keys in the

yeastgenes.sgd source file are not unique, this method returns all entries that have a key of AAC1
or AAD10.

Read Entries from Your Source File

The BioIndexedFile object includes a read method, which you can use to read and parse a subset
of entries from your source file. The read method parses the entries using an interpreter function
specified by the Interpreter property of the BioIndexedFile object.

Set the Interpreter Property

Before using the read method, make sure the Interpreter property of the BioIndexedFile
object is set appropriately.

If you constructed a BiolndexedFile The Interpreter property ...

object from ...

A source file with an application-specific By default is a handle to a function appropriate for that
format (FASTA, FASTQ, or SAM) file type and typically does not require you to change it.

Work with Next-Generation Sequencing Data

If you constructed a BiolndexedFile The Interpreter property ...
object from ...

A source file with a table, multi-row table, or |By default is [], which means the interpreter is an

flat format anonymous function in which the output is equivalent to
the input. You can change this to a handle to a function
that accepts a character vector of one or more
concatenated entries and returns a structure or an
array of structures containing the interpreted data.

There are two ways to set the Interpreter property of the BioIndexedFile object:

* When constructing the BioIndexedFile object, use the Interpreter property name/property
value pair

» After constructing the BioIndexedFile object, set the Interpreter property

Note For more information on setting the Interpreter property of a BioIndexedFile object, see
BioIndexedFile class.

Read a Subset of Entries

The read method reads and parses a subset of entries that you specify using either entry indices or
keys.

Example

To quickly find all the gene ontology (GO) terms associated with a particular gene because the entry
keys are gene names:

1 Setthe Interpreter property of the gene2goObj BioIndexedFile object to a handle to a
function that reads entries and returns only the column containing the GO term. In this case the
interpreter is a handle to an anonymous function that accepts character vectors and extracts
those that start with the characters GO.

gene2golObj.Interpreter = @(x) regexp(x,'GO:\d+', 'match"')
2 Read only the entries that have a key of YAT2, and return their GO terms.

GO YAT2 entries = read(gene2goObj, 'YAT2')
GO YAT2 entries =

'G0:0004092"' 'G0:0005737' 'GO:0006066' 'GO:0006066' 'GO:0009437'

2-5

2 High-Throughput Sequence Analysis

Manage Sequence Read Data in Objects

2-6

In this section...

“Overview” on page 2-6

“Represent Sequence and Quality Data in a BioRead Object” on page 2-7

“Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object” on page 2-8
“Retrieve Information from a BioRead or BioMap Object” on page 2-10

“Set Information in a BioRead or BioMap Object” on page 2-12

“Determine Coverage of a Reference Sequence” on page 2-12

“Construct Sequence Alignments to a Reference Sequence” on page 2-13

“Filter Read Sequences Using SAM Flags” on page 2-14

Overview

High-throughput sequencing instruments produce large amounts of sequence read data that can be
challenging to store and manage. Using objects to contain this data lets you easily access,
manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with sequence read data.

Object Contains This Information Construct from One of These
BioRead * Sequence headers ¢ FASTQ file

* Read sequences * SAM file

* Sequence qualities (base calling) * FASTQ structure (created using the

fastqread function)

* SAM structure (created using the
samread function)

* Cell arrays containing header,
sequence, and quality information
(created using the fastqread

function)
BioMap * Sequence headers o SAM file
* Read sequences * BAM file
* Sequence qualities (base calling) * SAM structure (created using the
*+ Sequence alignment and mapping samread function)
information (relative to a single * BAM structure (created using the
reference sequence), including bamread function)
mapping quality + Cell arrays containing header,

sequence, quality, and mapping/
alignment information (created using
the samread or bamread function)

Manage Sequence Read Data in Objects

Represent Sequence and Quality Data in a BioRead Object
Prerequisites

A BioRead object represents a collection of sequence reads. Each element in the object is associated
with a sequence, sequence header, and sequence quality information.

Construct a BioRead object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing its contents
is memory efficient. However, you cannot modify object properties, other than the Name property.
This is the default method if you construct a BioRead object from a FASTQ- or SAM-formatted
file.

* In Memory — The data is read into memory. Constructing the object and accessing its contents is
limited by the amount of available memory. However, you can modify object properties. When you
construct a BioRead object from a FASTQ structure or cell arrays, the data is read into memory.
When you construct a BioRead object from a FASTQ- or SAM-formatted file, use the InMemory
name-value pair argument to read the data into memory.

Construct a BioRead Object from a FASTQ- or SAM-Formatted File

Note This example constructs a BioRead object from a FASTQ-formatted file. Use similar steps to
construct a BioRead object from a SAM-formatted file.

Use the BioRead constructor function to construct a BioRead object from a FASTQ-formatted file
and set the Name property:

BRObj 1

BioRead('SRR005164 1 50.fastq', 'Name', 'MyObject')

BRObj 1

BioRead with properties:

Quality: [50x1 File indexed property]
Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSeqs: 50
Name: 'MyObject'’

The constructor function construct a BioRead object and, if an index file does not already exist, it
also creates an index file with the same file name, but with an .IDX extension. This index file, by
default, is stored in the same location as the source file.

Caution Your source file and index file must always be in sync.
» After constructing a BioRead object, do not modify the index file, or you can get invalid results
when using the existing object or constructing new objects.

+ If you modify the source file, delete the index file, so the object constructor creates a new index
file when constructing new objects.

2-7

2 High-Throughput Sequence Analysis

2-8

Note Because you constructed this BioRead object from a source file, you cannot modify the
properties (except for Name) of the BioRead object.

Represent Sequence, Quality, and Alignment/Mapping Data in a
BioMap Object

Prerequisites

A BioMap object represents a collection of sequence reads that map against a single reference
sequence. Each element in the object is associated with a read sequence, sequence header, sequence
quality information, and alignment/mapping information.

When constructing a BioMap object from a BAM file, the maximum size of the file is limited by your
operating system and available memory:.

Construct a BioMap object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing its contents
is memory efficient. However, you cannot modify object properties, other than the Name property.
This is the default method if you construct a BioMap object from a SAM- or BAM-formatted file.

* In Memory — The data is read into memory. Constructing the object and accessing its contents is
limited by the amount of available memory. However, you can modify object properties. When you
construct a BioMap object from a structure, the data stays in memory. When you construct a
BioMap object from a SAM- or BAM-formatted file, use the InMemory name-value pair argument
to read the data into memory.

Construct a BioMap Object from a SAM- or BAM-Formatted File

Note This example constructs a BioMap object from a SAM-formatted file. Use similar steps to
construct a BioMap object from a BAM-formatted file.

1 Ifyou do not know the number and names of the reference sequences in your source file,
determine them using the saminfo or baminfo function and the ScanDictionary name-value
pair argument.

samstruct = saminfo('ex2.sam', 'ScanDictionary', true);
samstruct.ScannedDictionary

ans =

'seql’
'seq2’

Tip The previous syntax scans the entire SAM file, which is time consuming. If you are confident
that the Header information of the SAM file is correct, omit the ScanDictionary name-value
pair argument, and inspect the SequenceDictionary field instead.

2 Use the BioMap constructor function to construct a BioMap object from the SAM file and set the
Name property. Because the SAM-formatted file in this example, ex2.sam, contains multiple
reference sequences, use the SelectRef name-value pair argument to specify one reference
sequence, seql:

Manage Sequence Read Data in Objects

BMObj2 = BioMap('ex2.sam', 'SelectRef', 'seql', 'Name', 'MyObject')
BMObj2 =
BioMap with properties:

SequenceDictionary: 'seql'

Reference: [1501x1 File indexed property]
Signature: [1501x1 File indexed property]
Start: [1501x1 File indexed property]
MappingQuality: [1501x1 File indexed property]
Flag: [1501x1 File indexed property]
MatePosition: [1501x1 File indexed property]
Quality: [1501x1 File indexed property]
Sequence: [1501x1 File indexed property]
Header: [1501x1 File indexed property]

NSeqs: 1501

Name: 'MyObject’

The constructor function constructs a BioMap object and, if index files do not already exist, it also
creates one or two index files:

If constructing from a SAM-formatted file, it creates one index file that has the same file name as
the source file, but with an .IDX extension. This index file, by default, is stored in the same
location as the source file.

If constructing from a BAM-formatted file, it creates two index files that have the same file name
as the source file, but one with a .BAI extension and one with a .LINEARINDEX extension. These
index files, by default, are stored in the same location as the source file.

Caution Your source file and index files must always be in sync.

After constructing a BioMap object, do not modify the index files, or you can get invalid results
when using the existing object or constructing new objects.

If you modify the source file, delete the index files, so the object constructor creates new index
files when constructing new objects.

Note Because you constructed this BioMap object from a source file, you cannot modify the
properties (except for Name and Reference) of the BioMap object.

Construct a BioMap Object from a SAM or BAM Structure

Note This example constructs a BioMap object from a SAM structure using samread. Use similar
steps to construct a BioMap object from a BAM structure using bamread.

Use the samread function to create a SAM structure from a SAM-formatted file:

SAMStruct = samread('ex2.sam');

To construct a valid BioMap object from a SAM-formatted file, the file must contain only one
reference sequence. Determine the number and names of the reference sequences in your SAM-

2-9

2 High-Throughput Sequence Analysis

2-10

formatted file using the unique function to find unique names in the ReferenceName field of
the structure:

unique ({SAMStruct.ReferenceName})
ans =

'seql’ 'seq2'’

3 Use the BioMap constructor function to construct a BioMap object from a SAM structure.
Because the SAM structure contains multiple reference sequences, use the SelectRef name-
value pair argument to specify one reference sequence, seql:

BMObjl = BioMap(SAMStruct, 'SelectRef', 'seql')

BMObj 1

BioMap with properties:

SequenceDictionary: {'seql'}
Reference: {1501x1 cell}
Signature: {1501x1 cell}
Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]
Flag: [1501x1 uintl6]
MatePosition: [1501x1 uint32]

Quality: {1501x1 cell}

Sequence: {1501x1 cell}

Header: {1501x1 cell}

NSeqs: 1501
Name: "'

Retrieve Information from a BioRead or BioMap Object

You can retrieve all or a subset of information from a BioRead or BioMap object.

Retrieve a Property from a BioRead or BioMap Object

You can retrieve a specific property from elements in a BioRead or BioMap object.

For example, to retrieve all headers from a BioRead object, use the Header property as follows:
allHeaders = BRObjl.Header;

This syntax returns a cell array containing the headers for all elements in the BioRead object.

Similarly, to retrieve all start positions of aligned read sequences from a BioMap object, use the
Start property of the object:

allStarts = BMObjl.Start;

This syntax returns a vector containing the start positions of aligned read sequences with respect to
the position numbers in the reference sequence in a BioMap object.

Manage Sequence Read Data in Objects

Retrieve Multiple Properties from a BioRead or BioMap Object

You can retrieve multiple properties from a BioRead or BioMap object in a single command using the
get method. For example, to retrieve both start positions and headers information of a BioMap
object, use the get method as follows:

multiProp = get(BMObjl, {'Start', 'Header'});

This syntax returns a cell array containing all start positions and headers information of a BioMap
object.

Note Property names are case sensitive.

For a list and description of all properties of a BioRead object, see BioRead class. For a list and
description of all properties of a BioMap object, see BioMap class.

Retrieve a Subset of Information from a BioRead or BioMap Object

Use specialized get methods with a numeric vector, logical vector, or cell array of headers to retrieve
a subset of information from an object. For example, to retrieve the first 10 elements from a BioRead
object, use the getSubset method:

newBRObj = getSubset(BRObjl, [1:10]);

This syntax returns a new BioRead object containing the first 10 elements in the original BioRead
object.

For example, to retrieve the first 12 positions of sequences with headers SRR005164.1,
SRR005164.7, and SRR005164.16, use the getSubsequence method:

subSeqs = getSubsequence(BRObj1l, ...
{'SRRO0O5164.1', 'SRRO05164.7', 'SRR005164.16'}, [1:12]"')
subSeqgs =
'"TGGCTTTAAAGC'
'CCCGAAAGCTAG'
"AATTTTGCGGCT'

For example, to retrieve information about the third element in a BioMap object, use the getInfo
method:

Info 3 = getInfo(BMObjl, 3);
This syntax returns a tab-delimited character vector containing this information for the third element:

* Sequence header

» SAM flags for the sequence

» Start position of the aligned read sequence with respect to the reference sequence
* Mapping quality score for the sequence

» Signature (CIGAR-formatted character vector) for the sequence

* Sequence

2-11

2 High-Throughput Sequence Analysis

2-12

* Quality scores for sequence positions

Note Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class. For a
complete list and description of methods of a BioMap object, see BioMap class.

Set Information in a BioRead or BioMap Object
Prerequisites

To modify properties (other than Name and Reference) of a BioRead or BioMap object, the data
must be in memory, and not indexed. To ensure the data is in memory, do one of the following:

* Construct the object from a structure as described in “Construct a BioMap Object from a SAM or
BAM Structure” on page 2-9.

* Construct the object from a source file using the InMemory name-value pair argument.

Provide Custom Headers for Sequences

First, create an object with the data in memory:

BRObj1l = BioRead('SRR005164 1 50.fastq', 'InMemory',true);

To provide custom headers for sequences of interest (in this case sequences 1 to 5), do the following:
BRObjl.Header(1:5) = {'H1', 'H2', 'H3', 'H4', 'H5'};

Alternatively, you can use the setHeader method:

BRObjl = setHeader(BRObj1l, {'Hl1', 'H2', 'H3', 'H4', 'H5'}, [1:51]);

Several other specialized set methods let you set the properties of a subset of elements in a
BioRead or BioMap object.

Note Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class. For a
complete list and description of methods of a BioMap object, see BioMap class.

Determine Coverage of a Reference Sequence

When working with a BioMap object, you can determine the number of read sequences that:
* Align within a specific region of the reference sequence

» Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of the read sequences that
align within the first 25 positions of the reference sequence. To do so, use the getCounts,
getIndex, and getStart methods:

Cov = getCounts(BMObjl, 1, 25)

Manage Sequence Read Data in Objects

Cov =

12

Indices

getIndex(BMObjl, 1, 25)

Indices

CoNOOUA,WNR

10
11
12

startPos getStart(BMObjl, Indices)

startPos

1
3
5
6
9
13
13
15
18
22
22
24

The first two syntaxes return the number and indices of the read sequences that align within the
specified region of the reference sequence. The last syntax returns a vector containing the start

position of each aligned read sequence, corresponding to the position numbers of the reference

sequence.

For example, you can also compute the number of the read sequences that align to each of the first
10 positions of the reference sequence. For this computation, use the getBaseCoverage method:

Cov = getBaseCoverage(BMObjl, 1, 10)

Cov =

Construct Sequence Alignments to a Reference Sequence
It is useful to construct and view the alignment of the read sequences that align to a specific region of

the reference sequence. It is also helpful to know which read sequences align to this region in a
BioMap object.

2-13

2 High-Throughput Sequence Analysis

2-14

For example, to retrieve the alignment of read sequences to the first 12 positions of the reference
sequence in a BioMap object, use the getAlignment method:

[Alignment 1 12, Indices] = getAlignment(BMObj2, 1, 12)
Alignment 1 12 =
CACTAGTGGCTC
CTAGTGGCTC
AGTGGCTC

GTGGCTC
GCTC

Indices =

Uk WNR

Return the headers of the read sequences that align to a specific region of the reference sequence:
alignedHeaders = getHeader(BMObj2, Indices)

alignedHeaders

'B7 591:4:96:693:509'
"EAS54 65:7:152:368:113"
"EAS51 64:8:5:734:57"'
‘B7 591:1:289:587:906"
"EAS56 59:8:38:671:758"

Filter Read Sequences Using SAM Flags

SAM- and BAM-formatted files include the status of 11 binary flags for each read sequence. These
flags describe different sequencing and alignment aspects of a read sequence. For more information
on the flags, see the SAM Format Specification. The filterByFlag method lets you filter the read
sequences in a BioMap object by using these flags.

Filter Unmapped Read Sequences
1 Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

2 Usethe filterByFlag method to create a logical vector indicating the read sequences in a
BioMap object that are mapped.
LogicalVec _mapped = filterByFlag(BMObj2, 'unmappedQuery', false);

3 Use this logical vector and the getSubset method to create a new BioMap object containing
only the mapped read sequences.

filteredBMObj 1 = getSubset(BMObj2, LogicalVec mapped);

http://samtools.sourceforge.net/SAM1.pdf

Manage Sequence Read Data in Objects

Filter Read Sequences That Are Not Mapped in a Pair

1

Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

Use the filterByFlag method to create a logical vector indicating the read sequences in a
BioMap object that are mapped in a proper pair, that is, both the read sequence and its mate are
mapped to the reference sequence.

LogicalVec paired = filterByFlag(BMObj2, 'pairedInMap', true);

Use this logical vector and the getSubset method to create a new BioMap object containing
only the read sequences that are mapped in a proper pair.

filteredBMObj 2 = getSubset(BMObj2, LogicalVec paired);

2-15

2 High-Throughput Sequence Analysis

Store and Manage Feature Annotations in Objects

2-16

In this section...

“Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object” on page 2-16
“Construct an Annotation Object” on page 2-16

“Retrieve General Information from an Annotation Object” on page 2-16

“Access Data in an Annotation Object” on page 2-17

“Use Feature Annotations with Sequence Read Data” on page 2-18

Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Object

The GFFAnnotation and GTFAnnotation objects represent a collection of feature annotations for
one or more reference sequences. You construct these objects from GFF (General Feature Format)
and GTF (Gene Transfer Format) files. Each element in the object represents a single annotation. The
properties and methods associated with the objects let you investigate and filter the data based on
reference sequence, a feature (such as CDS or exon), or a specific gene or transcript.

Construct an Annotation Object

Use the GFFAnnotation constructor function to construct a GFFAnnotation object from either a
GFF- or GTF-formatted file:

GFFAnnotObj = GFFAnnotation('tair8 1.gff')

GFFAnnotObj

GFFAnnotation with properties:

FieldNames: {1x9 cell}
NumEntries: 3331

Use the GTFAnnotation constructor function to construct a GTFAnnotation object from a GTF-
formatted file:

GTFAnnotObj GTFAnnotation('hum37_2 1M.gtf')

GTFAnnotObj

GTFAnnotation with properties:
FieldNames: {1x11 cell}
NumEntries: 308

Retrieve General Information from an Annotation Object

Determine the field names and the number of entries in an annotation object by accessing the
FieldNames and NumEntries properties. For example, to see the field names for each annotation
object constructed in the previous section, query the FieldNames property:

GFFAnnotObj.FieldNames

Store and Manage Feature Annotations in Objects

ans =
Columns 1 through 6
'Reference’ ‘Start’ 'Stop' 'Feature' ‘Source' ‘Score'
Columns 7 through 9
'Strand’ '"Frame' "Attributes’
GTFAnnotObj.FieldNames
ans =
Columns 1 through 6
'Reference’ 'Start' 'Stop" 'Feature' 'Gene’ 'Transcript’
Columns 7 through 11

'Source' 'Score' 'Strand'’ '"Frame' 'Attributes’

Determine the range of the reference sequences that are covered by feature annotations by using the
getRange method with the annotation object constructed in the previous section:

range

getRange (GFFAnnotObj)

range

3631 498516

Access Data in an Annotation Object
Create a Structure of the Annotation Data

Creating a structure of the annotation data lets you access the field values. Use the getData method
to create a structure containing a subset of the data in a GFFAnnotation object constructed in the
previous section.

% Extract annotations for positions 1 through 10000 of the
% reference sequence
AnnotStruct = getData(GFFAnnotObj,1,10000)

AnnotStruct

60x1 struct array with fields:

Reference

Start

Stop

Feature

Source

Score

Strand

Frame

Attributes

2-17

2 High-Throughput Sequence Analysis

2-18

Access Field Values in the Structure
Use dot indexing to access all or specific field values in a structure.

For example, extract the start positions for all annotations:

Starts = AnnotStruct.Start;

Extract the start positions for annotations 12 through 17. Notice that you must use square brackets
when indexing a range of positions:

Starts 12 17

[AnnotStruct(12:17).Start]

Starts 12 17
4706 5174 5174 5439 5439 5631
Extract the start position and the feature for the 12th annotation:
Start 12 = AnnotStruct(12).Start
Start 12 =
4706
Feature 12 = AnnotStruct(12).Feature
Feature 12 =

CDS

Use Feature Annotations with Sequence Read Data

Investigate the results of HTS sequencing experiments by using GFFAnnotation and
GTFAnnotation objects with BioMap objects. For example, you can:

» Determine counts of sequence reads aligned to regions of a reference sequence associated with
specific annotations, such as in RNA-Seq workflows.

* Find annotations within a specific range of a peak of interest in a reference sequence, such as in
ChIP-Seq workflows.

Determine Annotations of Interest

1 Construct a GTFAnnotation object from a GTF- formatted file:

GTFAnnotObj = GTFAnnotation('hum37_2 1M.gtf');

2 Use the getReferenceNames method to return the names for the reference sequences for the
annotation object:

refNames = getReferenceNames(GTFAnnotObj)

refNames

'chr2’
3 Use the getFeatureNames method to retrieve the feature names from the annotation object:

featureNames = getFeatureNames(GTFAnnotObj)

Store and Manage Feature Annotations in Objects

featureNames =

'CDS'
‘exon’
'start _codon'
'stop_codon'

4 Use the getGeneNames method to retrieve a list of the unique gene names from the annotation
object:

geneNames = getGeneNames (GTFAnnotObj)

geneNames

'uc02qvu.2’
'uc02qvv.2'
'uc02qvw. 2’
'uc002qvx.2'
'uc02qvy.2'
'uc002qvz.2'
'ucO02qwa.2’
'uc02qwb .2’
'ucl02qgqwc. 1’
'uc02qwd.2’
'uc02qgwe. 3"
'uc02qwf .2’
'uc002qwg.2'’
'uc002qwh .2’
'uc002gqwi.3"’
'uc002qwk.2'’
'uc002qwl.2’
'uc02qwm. 1’
'uc02qwn. 1’
'ucl02qgwo.1"
'uc02qwp.2'
'uc02qwq.2'
'uc0l0ewe.2'
'uc010ewf.1'
'uc010ewg.2'
'uc010ewh.1’
'uc010ewi.2'’
'uc010yim.1’

The previous steps gave us a list of available reference sequences, features, and genes associated
with the available annotations. Use this information to determine annotations of interest. For
instance, you might be interested only in annotations that are exons associated with the uc002qvv.2
gene on chromosome 2.

Filter Annotations

Use the getData method to filter the annotations and create a structure containing only the
annotations of interest, which are annotations that are exons associated with the uc002qvv.2 gene on
chromosome 2.

AnnotStruct = getData(GTFAnnotObj, 'Reference', 'chr2',...
'Feature', 'exon', 'Gene', 'ucf02qvv.2")

AnnotStruct

2-19

2 High-Throughput Sequence Analysis

2-20

12x1 struct array with fields:

Reference
Start

Stop
Feature
Gene
Transcript
Source
Score
Strand
Frame
Attributes

The return structure contains 12 elements, indicating there are 12 annotations that meet your filter
criteria.

Extract Position Ranges for Annotations of Interest

After filtering the data to include only annotations that are exons associated with the uc002qvv.2
gene on chromosome 2, use the Start and Stop fields to create vectors of the start and end positions
for the ranges associated with the 12 annotations.

StartPos = [AnnotStruct.Start];
EndPos = [AnnotStruct.Stopl;

Determine Counts of Sequence Reads Aligned to Annotations

Construct a BioMap object from a BAM-formatted file containing sequence read data aligned to
chromosome 2.

BMObj3 = BioMap('ex3.bam');

Then use the range for the annotations of interest as input to the getCounts method of a BioMap
object. This returns the counts of short reads aligned to the annotations of interest.

counts = getCounts(BMObj3,StartPos,EndPos, 'independent', true)
counts =
1399
54
221

97
125

65

12

Visualize and Investigate Sequence Read Alignments

Visualize and Investigate Sequence Read Alignments

In this section...

“When to Use the NGS Browser to Visualize and Investigate Data” on page 2-21
“Open the NGS Browser” on page 2-21

“Import Data into the NGS Browser” on page 2-23

“Zoom and Pan to a Specific Region of the Alignment” on page 2-25
“View Coverage of the Reference Sequence” on page 2-25

“View the Pileup View of Short Reads” on page 2-26

“Compare Alignments of Multiple Data Sets” on page 2-26

“View Location, Quality Scores, and Mapping Information” on page 2-27
“Flag Reads” on page 2-28

“Evaluate and Flag Mismatches” on page 2-28

“View Insertions and Deletions” on page 2-29

“View Feature Annotations” on page 2-29

“Print and Export the Browser Image” on page 2-30

When to Use the NGS Browser to Visualize and Investigate Data

The NGS Browser lets you visually verify and investigate the alignment of sequence reads to a
reference sequence, in support of analyses that measure genetic variations and gene expression. The
NGS Browser lets you:

* Visualize sequence reads aligned to a nucleotide reference sequence.

* Compare multiple data sets aligned against a common reference sequence.

* View coverage of different bases and regions of the reference sequence.

» Investigate quality and other details of aligned reads.

* Identify mismatches due to base-calling errors or polymorphisms.

* Visualize insertions and deletions.

* Retrieve feature annotations relative to a specific region of the reference sequence.

» Investigate regions of interest in the alignment, determined by various analyses.

You can visualize and investigate the aligned data before, during, or after any preprocessing
(filtering, quality recalibration) or analysis steps you perform on the aligned data.

Open the NGS Browser

To open the NGS Browser, type the following in the MATLAB Command Window:

ngsbrowser

Alternatively, click the NGS Browser on the Apps tab.

2-21

2 High-Throughput Sequence Analysis

File Desktop Window Help

Centter on Position: 0 EL 3L X}

Track List A x
Overview - .T li | x
Name Type Visible Data Source
Ruler
Settings. 2 x
~ Browser
Visible range for display (kb):
Show Overview

Specify nuclestide colors:

-AM-c -6 -7 H-N

Read name Base Pos

2-22

Visualize and Investigate Sequence Read Alignments

Import Data into the NGS Browser

Ruler indicates maximum coveragein display range

/ Rubberband indicates range displayed in 3 tracks

i
Overview 1,569 bp oy
I]] 1 Il
L 1 1 I 1
/ 500 1,000 1,500
Ruler /
754 bp
%p SDEI bp EDD bp ?DEI bp BEII:I bp ‘BEIEI bp 1, EIEID bp i, 1I:IEI bp s
1 1
exlref I|IIIII.IIIIIIII|IIIIIIIIIIIIIIIII|IIIIIIIII-I Illlll IIIIIIIII IIIIIII | ||II-I|I IIIIIIIII-I-IIIIII &
[=] ex1 -
| | | 3
[|
{ |
[l 111 |
| [| Il
Il |
| | |
| Il
| | { |
I | [Il
| I 111 |
Il | | |
| [| |
| |
' Il |
(I | [l |
| | |
|1 | | b ! I
I | |
| | | -
= features] S a_— -

Browser Displaying Reference Track, One Alignment Track, and One Annotation Track
Import a Reference Sequence

You can import a single reference sequence into the NGS Browser. The reference sequence must be
in a FASTA file.

1 Select File > Add Data from File.
2 In the Open dialog box, select a FASTA file, and then click Open.

Tip You can use the getgenbank function with the ToFile and SequenceOnly name-value pair
arguments to retrieve a reference sequence from the GenBank database and save it to a FASTA-
formatted file.

2-23

https://www.ncbi.nlm.nih.gov/Genbank/

2 High-Throughput Sequence Analysis

2-24

Import Sequence Read Alignment Data

You can import multiple data sets of sequence read alignment data. The alignment data must be in
either of the following:

BioMap object

Tip Construct a BioMap object on page 2-8 from a SAM- or BAM-formatted file to investigate,
subset, and filter on page 2-14 the data before importing it into the NGS Browser.

SAM- or BAM-formatted file

Note Your SAM- or BAM-formatted file must:

* Have reads ordered by start position in the reference sequence.

* Have an IDX index file (for a SAM-formatted file) or BAI and LINEARINDEX index files (for a
BAM-formatted file) stored in the same location as your source file. Otherwise, the source file
must be stored in a location to which you have write access, because MATLAB needs to create
and store index files in this location.

Tip Try using SAMtools to check if the reads in your SAM- or BAM-formatted file are ordered by
position in the reference sequence, and also to reorder them, if needed.

Tip If you do not have index files (IDX or BAI and LINEARINDEX) stored in the same location as
your source file, and your source file is stored in a location to which you do not have write access,
you cannot import data from the source file directly into the browser. Instead, construct a BioMap
object from the source file using the IndexDir name-value pair argument, and then import the
BioMap object into the browser.

To import sequence read alignment data:

1

4

Select File > Add Data from File or File > Import Alignment Data from MATLAB
Workspace.

Select a SAM-formatted file, BAM-formatted file, or BioMap object.

If you select a file containing multiple reference sequences, in the Select Reference dialog box,
select a reference or scan the file for available references and their mapped reads counts. Click
OK.

Repeat the previous steps to import additional data sets.

Import Feature Annotations

You can import multiple sets of feature annotations from GFF- or GTF-formatted files that contain
data for a single reference sequence.

1
2
3

Select File > Add Data from File.
In the Open dialog box, select a GFF- or GTF-formatted file, and then click Open.
Repeat the previous steps to import additional annotations.

http://samtools.sourceforge.net/

Visualize and Investigate Sequence Read Alignments

Zoom and Pan to a Specific Region of the Alignment

To zoom in and out:

Use the | toolbar buttons,
or click-drag an edge of the rubberband in the Overview area.

. =l

1,000

To pan across the alignment:

Use the F» toolbar buttons,
or click-drag the rubberband in the Overview area.

- -
1,000 q.q:.]

Tip Use the left and right arrow keys to pan in one base pair (bp) increments.

View Coverage of the Reference Sequence

At the top of each alignment track, the coverage view displays the coverage of each base in the
reference sequence. The vertical ruler on the left edge of the coverage view indicates the maximum
coverage in the display range. Hover the mouse pointer over a position in the coverage view to
display the location and counts.

cT CTTCCACOCTCTCATCT C TCCACT TLCCGC

r4s I:E
Counts: 45
Location: 896

Note The browser computes coverage at the base pair resolution, instead of binning, even when
zoomed out.

To change the percent coverage displayed, click anywhere in the alignment track, and then edit the
Alignment Coverage settings.

Vertical viewing range(%6):

Min: |0
Max: 100

2-25

2 High-Throughput Sequence Analysis

2-26

Tip Set Max to a value greater than 100, if needed, when comparing the coverage of multiple tracks
of reads.

View the Pileup View of Short Reads

Each alignment track includes a pileup view of the short reads aligned to the reference sequence.

T TCCCATTT CCCCTCT CCOTTCTATTTGOGT T C
rai

Limit the depth of the reads displayed in the pileup view by setting the Maximum display read
depth in the Alignment Pileup settings.

Maxirnum display read depth: 1,000
Mapplng quality threshold:

BT A A" 4N 4,\,\/\

Tip Limiting the depth of short reads in the pileup view does not change the counts displayed in the
coverage view.

Compare Alignments of Multiple Data Sets

Compare multiple data sets, with each data set in its own track, against a common reference
sequence. Use the Track List to show/hide, order, and delete tracks of data.

Visualize and Investigate Sequence Read Alignments

4\ NGS Browser

Browser

File Desktop Window Help
Center on Position: 155,537,955 G| @

Overview

N

159 mb
il

S0M 100M 150M

Ruler

151 bp
155,537,680 bp

155,537,920 bp 155,537,940 bp 155,537,960 bp 155,537,580 bp 155,538,000 bp 155,538,020 bp | _
.

hs_ref GRCh37.p2_.

[ESNECH =3

_
BB %

Name Type Visible Data Source
hs_ref_GRCh37.p2_chi7 [Sequence Mi\sandbox.

]
s1BMObj ShortRead..., (/] |MATLABW.
s5BMObj ShortRead...| [/] [MATLABW.

P L L S S v

= s1BMObj

T

Settings A x

Vertical viewing range(%):
Min: |0
Max: 100

E s5BMObj #

1| Maximum display read depth: [1,000
Mapping quality threshold: |20

- Flag duplicate reads

- Flag reads with unmapped pair
Shade mismatch bases by Phred quality:

(Requires reference sequence)
Min: |5
Max: 39
[] Show all bases (Requires sufficient zoom)

[Color by strand:
~ Forward reads

m

= Reverse reads

Visible range for display (kb): 10
Shouw Overview
Specify nucleotide colors:

-AM-c W-c -7 H-N

Counts: 2 Base Pos 155,538,030

View Location, Quality Scores, and Mapping Information

Hover the mouse pointer over a position in a read to display strand direction, location, quality, and
mapping information for the base, the read, and its paired mate.

Read name = EAS]L_95:7:55:506:125
Alignment start = 817 (+)

Cigar = 35M

Mapped = yes

Mapping quality = 99
Location: 822

Base=C

Base Phred quality = 60

Pair = EASL_95:7:55:508:125:0 (-]
Pair is mapped = yes

2-27

2 High-Throughput Sequence Analysis

Flag Reads

Click anywhere in an alignment track to display the Alignment Pileup settings.

Maximum display read depth: (1,000
Mapping quality threshold: |20

o * Flag duplicate reads

o = Flag reads with unmapped pair

| Shade mismatch bases by Phred quality:

(Requires reference sequence)

Min: |2
Max: |3p
Show all bases (Requires sufficient zoom)

Color by strand:

* Forward reads

* Reverse reads

Flag Reads with Low Mapping Quality

Set the Mapping quality threshold in the Alignment Pileup section to flag low-quality reads. Reads
with a mapping quality below this level appear in a lighter shade of gray.

Flag Duplicate Reads
Select Flag duplicate reads and select an outline color.
Flag Reads with Unmapped Pairs

Select Flag reads with unmapped pair and select an outline color.

Evaluate and Flag Mismatches

Mismatches display as colored blocks or letters, depending on the zoom level.
11 | | |
Zoomed out view of read — Mismatches display as bars
o T C o T
Zoomed in view of read — Mismatches display as letters
In addition to the base Phred quality information that displays in the tooltip, you can visualize quality

differences by using the Shade mismatch bases by Phred quality settings.

2-28

Visualize and Investigate Sequence Read Alignments

Shade mismatch bases by Phred quality:
(Requires reference sequence)

Min: |3
Max: |3

LW N W N N N N Y Ny

The mismatch blocks or letters display in:

* Light shade — Mismatch bases with Phred scores below the minimum

* Graduation of medium shades — Mismatch bases with Phred scores within the minimum to
maximum range

* Dark shade — Mismatch bases with Phred scores above the maximum

View Insertions and Deletions

The NGS Browser designates insertions with a ! symbol. Hover the mouse pointer over the insertion
symbol to display information about it.

!

Read name = EASSG_B5:1:163:846:223
Insertion: CATAG

The NGS Browser designates deletions with dashes.

View Feature Annotations

After importing a feature annotation file, you can zoom and pan to view feature annotations
associated with a region of interest in the alignment. Hover the mouse pointer over the feature
annotation.

Ly

Location: 180,866 .. 181,324
Type: CDS

Score = 0.0

Parent: ¥38C1AA4

Source: curated

2-29

2 High-Throughput Sequence Analysis

Print and Export the Browser Image

Print or export the browser image by selecting File > Print Image or File > Export Image.

2-30

Count Features from NGS Reads

Count Features from NGS Reads

This example shows how to count features from paired-end sequencing reads after aligning them to
the whole human genome curated by the Genome Reference Consortium. This example uses Genome
Reference Consortium Human Build 38 patch release 12 (GRCh38.p12) as the human genome
reference.

Prerequisites and Data Set

This example works on the UNIX® and Mac platforms only. Download the Bioinformatics Toolbox™
Interface for Bowtie Aligner support package from the Add-On Explorer.

This example assumes you have:

* Downloaded and extracted the RefSeq assembly from Genome Reference Consortium Human
Build 38 patch release 12 (GRCh38.p12).

* Downloaded and organized some paired-end reads data. This example uses the exome sequencing
data from the 1000 genomes project. Paired-end reads are indicated by ' 1' and ' 2' in the
filenames following the accession number. Here is one possibility for how the data can be
organized in folders:

sequence/
+--HGOOO96/
| +--SRR077487 1.filt.fastq
| +--SRRO77487 2.filt.fastq
| +--SRR081241 1.filt.fastq
| +--SRR081241 2.filt.fastq
I
+--HGOOO97
+-- SRR765989 1.filt.fastq
+-- SRR765989 2.filt.fastq

Build Index

Construct an index for aligning reads to the reference using bowtie2build. The file
GCF_000001405.38 GRCh38.pl2 genomic.fna contains the human reference genome in the
FASTA format. bowtieIdx is the base name of the reference index files. The ' --threads 8' option
specifies the number of parallel threads to build index files faster.

bowtieIdx
buildFlag

'GCF_000001405.38 GRCh38.pl2 genomic.index';
bowtie2build('GCF 000001405.38 GRCh38.pl2 genomic.fna',...
bowtieIdx, '--threads 8');

Align Reads to Reference

Use the helper function alignAl1Reads to align each set of paired-end reads to the reference. The
function produces a SAM file in the current folder for each sample in the 'sequence' folder.

addpath(fullfile(matlabroot, 'examples', 'bioinfo', 'main')); % Make sure the supporting files are
type alignAllReads

function samFiles = alignAllReads(indexBaseName, inputDir, outputDir)
%SALIGNALLREADS Helper function for CountFeaturesExample

o® o°

SAMFILES = alignAllReads(INDEXBASENAME, INPUTDIR, OUTPUTDIR) aligns

2-31

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
http://www.internationalgenome.org/data-portal/sample

2 High-Throughput Sequence Analysis

paired-end sequencing reads using Bowtie2 to a prebuilt index,
producing SAM-formatted alignment files. INDEXBASENAME
is a character vector specifying the prefix of the index files

sample containing paired-end reads in FASTQ format:

INPUTDIR/

+-- HGOOO96/

| +-- SRRO77487 1.filt.fastq
| +-- SRRO77487 2.filt.fastq
| +-- SRRO81241 1.filt.fastq
| +-- SRRO81241 2.filt.fastq
|

+-- HGOOO97/

+-- SRR765989 1.filt.fastq
+-- SRR765989 2.filt.fastq

NOTE: each mate is distinguished by the ' 1' or ' 2' after the
accession number in the filename.

0® 0% 0° 0° A° A° A° A° A° O O° A° A O° A° A° O° O° O° O° o° o°

with Bowtie2, and are placed in OUTPUTDIR.

o°

Copyright 2018 The MathWorks, Inc.

% Use dir() to identify sample names (subfolders of inputDir).
d = dir(inputDir);
samples = {d(3:end).name}; % skip special '.' & '..' folders

samFiles = strcat(samples, '.sam');

for s=1:numel(samples)
% Identify mate pairs of reads for each sample
sampleReadsPath = fullfile(inputDir, samples{s});

readsl = dir([sampleReadsPath '/* 1*']);
reads2 = dir([sampleReadsPath '/* 2*']);
readsl = fullfile(sampleReadsPath, {readsl(:).name});
reads2 = fullfile(sampleReadsPath, {reads2(:).name});

% Get full filename to SAM file
samFiles{s} = fullfile(outputDir, samFiles{s});

% Perform alignment, if file doesn't exist
if ~exist(samFiles{s}, 'file')
bowtie2(indexBaseName, readsl, reads2, samFiles{s}, '-p 2');
end
end
end

samFiles = alignAllReads(bowtieIdx, 'sequence','."');

Selectively Align to Gene of Interest

created with BOWTIE2BUILD. INPUTDIR contains subdirectories for each

SAMFILES is a cell array of the resulting SAM-formatted files created

SAM files can be very large. Use BioMap to select only the data for the correct reference. For this
example, consider APOE, which is a gene on Chromosome 19 linked to Alzheimer's disease. Create a

set of smaller BAM files for APOE to improve performance.

2-32

Count Features from NGS Reads

apoeRef 'NC_000019.10'; % Reference name for Chromosome 19 in HG38
bamFiles strrep(samFiles,'.sam','.bam');
for i=1l:numel(samFiles)
if ~exist(bamFiles{i}, 'file")
bm = BioMap(samFiles{i}, 'SelectReference',apoeRef);
write(bm, bamFiles{i}, 'Format', 'bam');
end
end

Summarize Read Counts

Use featurecount to compare the number of transcripts for each APOE variant using a GTF file. A
full table of features is included in the GRCh38.p12 assembly in GFF format, which can be converted
to GTF using cuffgffread. This example uses a simplified GTF based on APOE transcripts.
APOE_gene.gtf is included with the software.

[FeatTable, Summary] = featurecount('APOE gene.gtf',6bamFiles, ...
'Metafeature', 'transcript _id');

Processing GTF file APOE gene.gtf ...
Processing BAM file ./HGO0096.bam ...
Processing reference NC 000019.10 ...
10000 reads processed ...
20000 reads processed
30000 reads processed
40000 reads processed
50000 reads processed
60000 reads processed
70000 reads processed
80000 reads processed
90000 reads processed ...
100000 reads processed ...
110000 reads processed ...
120000 reads processed ...
130000 reads processed ...
140000 reads processed ...
150000 reads processed ...
160000 reads processed ...
170000 reads processed ...
180000 reads processed ...
190000 reads processed ...
200000 reads processed ...
210000 reads processed ...
220000 reads processed ...
230000 reads processed ...
240000 reads processed ...
250000 reads processed ...
260000 reads processed ...
270000 reads processed ...
280000 reads processed ...
290000 reads processed ...
300000 reads processed ...
310000 reads processed ...
320000 reads processed ...
330000 reads processed ...
340000 reads processed ...
350000 reads processed ...
360000 reads processed ...

2-33

2 High-Throughput Sequence Analysis

2-34

370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
510000
520000
530000
540000
550000
560000
570000
580000
590000
600000
610000
620000
630000
640000
650000
660000
670000
680000
690000
700000
710000
720000
730000
740000
750000
760000
770000
780000
790000
800000
810000
820000
830000
840000
850000
860000
870000
880000
890000
900000
910000
920000
930000
940000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

950000

960000

970000

980000

990000

1000000
1010000
1020000
1030000
1040000
1050000
1060000
1070000
1080000
1090000
1100000
1110000
1120000
1130000
1140000
1150000
1160000
1170000
1180000
1190000
1200000
1210000
1220000
1230000
1240000
1250000
1260000
1270000
1280000
1290000
1300000
1310000
1320000
1330000
1340000
1350000
1360000
1370000
1380000
1390000
1400000
1410000
1420000
1430000
1440000
1450000
1460000
1470000
1480000
1490000
1500000
1510000
1520000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-35

2 High-Throughput Sequence Analysis

2-36

1530000
1540000
1550000
1560000
1570000
1580000
1590000
1600000
1610000
1620000
1630000
1640000
1650000
1660000
1670000
1680000
1690000
1700000
1710000
1720000
1730000
1740000
1750000
1760000
1770000
1780000
1790000
1800000
1810000
1820000
1830000
1840000
1850000
1860000
1870000
1880000
1890000
1900000
1910000
1920000
1930000
1940000
1950000
1960000
1970000
1980000
1990000
2000000
2010000
2020000
2030000
2040000
2050000
2060000
2070000
2080000
2090000
2100000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

2110000
2120000
2130000
2140000
2150000
2160000
2170000
2180000
2190000
2200000
2210000
2220000
2230000
2240000
2250000
2260000
2270000
2280000
2290000
2300000
2310000
2320000
2330000
2340000
2350000
2360000
2370000
2380000
2390000
2400000
2410000
2420000
2430000
2440000
2450000
2460000
2470000
2480000
2490000
2500000
2510000
2520000
2530000
2540000
2550000
2560000
2570000
2580000
2590000
2600000
2610000
2620000
2630000
2640000
2650000
2660000
2670000
2680000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-37

2 High-Throughput Sequence Analysis

2-38

2690000
2700000
2710000
2720000
2730000
2740000
2750000
2760000
2770000
2780000
2790000
2800000
2810000
2820000
2830000
2840000
2850000
2860000
2870000
2880000
2890000
2900000
2910000
2920000
2930000
2940000
2950000
2960000
2970000
2980000
2990000
3000000
3010000
3020000
3030000
3040000
3050000
3060000
3070000
3080000
3090000
3100000
3110000
3120000
3130000
3140000
3150000
3160000
3170000
3180000
3190000
3200000
3210000
3220000
3230000
3240000
3250000
3260000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

3270000
3280000
3290000
3300000
3310000
3320000
3330000
3340000
3350000
3360000
3370000
3380000
3390000
3400000
3410000
3420000
3430000
3440000
3450000
3460000
3470000
3480000
3490000
3500000
3510000
3520000
3530000
3540000
3550000
3560000
3570000
3580000
3590000
3600000
3610000
3620000
3630000
3640000
3650000
3660000
3670000
3680000
3690000
3700000
3710000
3720000
3730000
3740000
3750000
3760000
3770000
3780000
3790000
3800000
3810000
3820000
3830000
3840000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-39

2 High-Throughput Sequence Analysis

3850000 reads processed ...
3860000 reads processed ...
3870000 reads processed ...
3880000 reads processed ...
3890000 reads processed ...
3900000 reads processed ...
3910000 reads processed ...
3920000 reads processed ...
3930000 reads processed ...
3940000 reads processed ...
3950000 reads processed ...
3960000 reads processed ...
3970000 reads processed ...
Done.

See Also
BioMap | bowtie2 | bowtie2build | cuffgffread | cufflinks | featurecount

2-40

Identifying Differentially Expressed Genes from RNA-Seq Data

Identifying Differentially Expressed Genes from RNA-Seq Data

This example shows how to test RNA-Seq data for differentially expressed genes using a negative
binomial model.

Introduction

A typical differential expression analysis of RNA-Seq data consists of normalizing the raw counts and
performing statistical tests to reject or accept the null hypothesis that two groups of samples show no
significant difference in gene expression. This example shows how to inspect the basic statistics of
raw count data, how to determine size factors for count normalization and how to infer the most
differentially expressed genes using a negative binomial model.

The dataset for this example comprises of RNA-Seq data obtained in the experiment described by
Brooks et al. [1]. The authors investigated the effect of siRNA knock-down of pasilla, a gene known to
play an important role in the regulation of splicing in Drosophila melanogaster. The dataset consists
of 2 biological replicates of the control (untreated) samples and 2 biological replicates of the knock-
down (treated) samples.

Inspecting Read Count Tables for Genomic Features

The starting point for this analysis of RNA-Seq data is a count matrix, where the rows correspond to
genomic features of interest, the columns correspond to the given samples and the values represent
the number of reads mapped to each feature in a given sample.

The included file pasilla_count _noMM.mat contains two tables with the count matrices at the
gene level and at the exon level for each of the considered samples. You can obtain similar matrices
using the function featurecount.

load pasilla count noMM.mat

% preview the table of read counts for genes
geneCountTable(1:10,:)

ans =
10x6 table
ID Reference untreated3 untreated4 treated?2 treated3
{'FBgn0OOOEOEO3"'} {'3R'} 0 1 1 2
{'FBgn0OOOEOOE8"'} {'2R'} 142 117 138 132
{'FBgn00OOO14"'} {'3R'} 20 12 10 19
{'FBgn0OOEO15"'} {'3R'} 2 4 0 1
{'FBgn0OOEO17"'} {'3L'} 6591 5127 4809 6027
{'FBgn00OOOO18"'} {'2L'} 469 530 492 574
{'FBgn00O0O24"'} {'3R'} 5 6 10 8
{'FBgn00O0O28"'} {'X" } 0 0 2 1
{'FBgn0000032"'} {'3R'} 1160 1143 1138 1415
{'FBgn0OOOO36"'} {'3R'} 0 0 0 1

Note that when counting is performed without summarization, the individual features (exons in this
case) are reported with their metafeature assignment (genes in this case) followed by the start and
stop positions.

2-41

2 High-Throughput Sequence Analysis

% preview the table of read counts for exons
exonCountTable(1:10,:)

ans =
10x6 table

ID Reference untreated3 untreated4 treated? tr

{'FBgn0000003 2648220 2648518' } {'3R"} 0 0 0
{'FBgn0000008 18024938 18025756"'} {'2R"} 0 1 0
{'FBgn0000008 18050410 18051199'} {'2R"} 13 9 14
{'FBgn0000008 18052282 18052494'} {'2R"} 4 2 5
{'FBgn0000008 18056749 18058222'} {'2R"} 32 27 26
{'FBgn0000008 18058283 18059490} {'2R"} 14 18 29
{'FBgn0000008 18059587 18059757"'} {'2R"} 1 4 3
{'FBgn0000008 18059821 18059938'} {'2R"} 0 0 2
{'FBgn0000015 12758093 12760298"'} {'3R"'} 1 2 0
{'FBgn0000017 16615461 16618374'} {'3L"} 1807 1572 1557

You can annotate and group the samples by creating a logical vector as follows:
samples = geneCountTable(:,3:end).Properties.VariableNames;

untreated = strncmp(samples, 'untreated',length('untreated"'))
treated = strncmp(samples, 'treated',length('treated'))

untreated =

1x4 logical array

1 1 0 ©

treated =
1x4 logical array

0 0 1 1

Plotting the Feature Assignments

The included file also contains a table geneSummaryTable with the summary of assigned and
unassigned SAM entries. You can plot the basic distribution of the counting results by considering the
number of reads that are assigned to the given genomic features (exons or genes for this example), as
well as the number of reads that are unassigned (i.e. not overlapping any feature) or ambiguous (i.e.
overlapping multiple features).

st = geneSummaryTable({'Assigned', 'Unassigned ambiguous', 'Unassigned noFeature'},:)
bar(table2array(st)', 'stacked');

legend(st.Properties.RowNames', 'Interpreter', 'none', 'Location', 'southeast');
xlabel('Sample')

ylabel('Number of reads')

2-42

Identifying Differentially Expressed Genes from RNA-Seq Data

st =
3x4 table

untreated3 untreated4 treated2 treated3

Assigned 1.5457e+07 1.6302e+07 1.5146e+07 1.8856e+07
Unassigned ambiguous 1.5708e+05 1.6882e+05 1.6194e+05 1.9977e+05
Unassigned noFeature 7.5455e+05 5.8309e+05 5.8756e+05 6.8356e+05

%107

187

Mumber of reads

0.8r i
0.6 i
0.4 r i
-.Assigned
0.2 r I Unassigned_ambiguous | |
[|Unassigned noFeature
j
0
1 2 3 4
Sample

Note that a small fraction of the alignment records in the SAM files is not reported in the summary
table. You can notice this in the difference between the total number of records in a SAM file and the
total number of records processed during the counting procedure for that same SAM file. These
unreported records correspond to the records mapped to reference sequences that are not annotated
in the GTF file and therefore are not processed in the counting procedure. If the gene models account
for all the reference sequences used during the read mapping step, then all records are reported in
one of the categories of the summary table.

geneSummaryTable{'TotalEntries',:} - sum(geneSummaryTable{2:end,:})

ans =

2-43

2 High-Throughput Sequence Analysis

2-44

89516 95885 98207 104629

Plotting Read Coverage Across a Given Chromosome

When read counting is performed without summarization using the function featurecount, the
default IDs are composed by the attribute or metafeature (by default, gene id) followed by the start
and the stop positions of the feature (by default, exon). You can use the exon start positions to plot
the read coverage across any chromosome in consideration, for example chromosome arm 2L.

% consider chromosome arm 2L
chr2L = strcmp(exonCountTable.Reference, '2L");
exonCount = exonCountTable{:,3:end};

% retrieve exon start positions

exonStart = regexp(exonCountTable{chr2L,1},"' (\d+) ', 'tokens');
exonStart = [exonStart{:}];
exonStart = cellfun(@str2num, [exonStart{:}]1');

% sort exon by start positions
[~,1idx] = sort(exonStart);

% plot read coverage along the genomic coordinates
figure;
plot(exonStart(idx),exonCount(idx,treated),'.-r',...
exonStart(idx),exonCount(idx,untreated),'.-b');
xlabel('Genomic position');

ylabel('Read count (exon level)');

title('Read count on Chromosome arm 2L');

% plot read coverage for each group separately
figure;

subplot(2,1,1);
plot(exonStart(idx),exonCount(idx,untreated),'.-r');
ylabel('Read count (exon level)');
title('Chromosome arm 2L (treated samples)');
subplot(2,1,2);
plot(exonStart(idx),exonCount(idx,treated),'.-b");
ylabel('Read count (exon level)');

xlabel('Genomic position');

title('Chromosome arm 2L (untreated samples)');

Identifying Differentially Expressed Genes from RNA-Seq Data

Read count (exon level)

« 10%

Read count on Chromosome arm 2L

B
T

(%]
T

a3

1 15
Genomic position

2-45

2 High-Throughput Sequence Analysis

6 w1i0* Chromosome arm 2L ({treated samples)
E T T T T
@
S 4
8
g
92
]
i
&
0 0.5 1 1.5 2 2.5
%107
g X 10% Chromosome arm 2L {untreated samples)
E T T T T
@
S 4
8
g
32 1
=)
3
& g
0 0.5 1 1.2 2 2.5
Genomic position win”

Alternatively, you can plot the read coverage considering the starting position of each gene in a given
chromosome. The file pasilla genelLength.mat contains a table with the start and stop position of
each gene in the corresponding gene annotation file.

% load gene start and stop position information
load pasilla genelLength
genelLength(1:10,:)

ans =
10x5 table

ID Name Reference Start Stop
{'FBgn0037213'} {'CG12581"'} 3R 380 10200
{'FBgn00OO500 "'} {'Dsk' } 3R 15388 16170
{'FBgn0053294"'} {'CR33294'} 3R 17136 21871
{'FBgn0037215'} {'CG12582"'} 3R 23029 30295
{'FBgn0037217"'} {'CG14636"'} 3R 30207 41033
{'FBgn0037218"'} {'aux' } 3R 37505 53244
{'FBgn0051516"'} {'CG31516"'} 3R 44179 45852
{'FBgn0261436"'} {'DhpD"' } 3R 53106 54971
{'FBgn0037220"'} {'CG14641'} 3R 56475 58077
{'FBgn0015331"'} {'abs" } 3R 58765 60763

2-46

Identifying Differentially Expressed Genes from RNA-Seq Data

[)

% consider chromosome 3 ('Reference' is a categorical variable)

chr3 = (geneLength.Reference == '3L') | (geneLength.Reference == '3R");

sum(chr3)

% consider the counts for genes in chromosome 3
counts = geneCountTable{:,3:end};

[~,3,k] = intersect(geneCountTable{:, 'ID'},geneLength{chr3,'ID'});

gstart = geneLength{k, 'Start'};
gcounts = counts(j,:);

% sort according to ascending start position
[~,idx] = sort(gstart);

% plot read coverage by genomic position

figure;

plot(gstart(idx), gcounts(idx,treated),'.-r',...
gstart(idx), gcounts(idx,untreated),'.-b");

xlabel('Genomic position')

ylabel('Read count');

title('Read count on Chromosome 3');

ans =

6360

104 Read count on Chromosome 3

18 T T T T

16

12

Read count

0 0.5 1 15 2
Genomic position

2.5

%107

2-47

2 High-Throughput Sequence Analysis

2-48

Normalizing Read Counts

The read count in RNA-Seq data has been found to be linearly related to the abundance of transcripts
[2]. However, the read count for a given gene depends not only on the expression level of the gene,
but also on the total number of reads sequenced and the length of the gene transcript. Therefore, in
order to infer the expression level of a gene from the read count, we need to account for the
sequencing depth and the gene transcript length. One common technique to normalize the read count
is to use the RPKM (Read Per Kilobase Mapped) values, where the read count is normalized by the
total number of reads yielded (in millions) and the length of each transcript (in kilobases). This
normalization technique, however, is not always effective since few, very highly expressed genes can
dominate the total lane count and skew the expression analysis.

A better normalization technique consists of computing the effective library size by considering a size
factor for each sample. By dividing each sample's counts by the corresponding size factors, we bring
all the count values to a common scale, making them comparable. Intuitively, if sample A is
sequenced N times deeper than sample B, the read counts of non-differentially expressed genes are
expected to be on average N times higher in sample A than in sample B, even if there is no difference
in expression.

To estimate the size factors, take the median of the ratios of observed counts to those of a pseudo-
reference sample, whose counts can be obtained by considering the geometric mean of each gene
across all samples [3]. Then, to transform the observed counts to a common scale, divide the
observed counts in each sample by the corresponding size factor.

% estimate pseudo-reference with geometric mean row by row
pseudoRefSample = geomean(counts,2);

nz = pseudoRefSample > 0;

ratios = bsxfun(@rdivide, counts(nz,:),pseudoRefSample(nz));
sizeFactors = median(ratios,1)

sizeFactors =
0.9374 0.9725 0.9388 1.1789
% transform to common scale

normCounts = bsxfun(@rdivide, counts,sizeFactors);
normCounts(1:10, :)

ans =
1.0e+03 *

0 0.0010 0.0011 0.0017
0.1515 0.1203 0.1470 0.1120
0.0213 0.0123 0.0107 0.0161
0.0021 0.0041 0 0.0008
7.0315 5.2721 5.1225 5.1124
0.5003 0.5450 0.5241 0.4869
0.0053 0.0062 0.0107 0.0068

0 0 0.0021 0.0008
1.2375 1.1753 1.2122 1.2003

0 0 0 0.0008

Identifying Differentially Expressed Genes from RNA-Seq Data

You can appreciate the effect of this normalization by using the function boxplot to represent
statistical measures such as median, quartiles, minimum and maximum.

figure;

subplot(2,1,1)

maboxplot(log2(counts), 'title', 'Raw Read Count', 'orientation', 'horizontal')
ylabel('sample')

xlabel('log2(counts) ')

subplot(2,1,2)

maboxplot(log2(normCounts), 'title', 'Normalized Read Count', 'orientation', 'horizontal')
ylabel('sample')

xlabel('log2(counts) ')

Raw Read Count

4r === l P |
k) L —_—d e e e e e e e e e i
23r F——{ | - l
£
B2 F——{ | = T
1 === [- L
0 2 4 6 8 10 12 14 16 18

log2icounts)

Mormalized Read Count

P - [+ -——————=—- —]
@
5_3' '___{ | |_ _________ — T
E
G2l - R -
1 === | F—————————= .
0 2 4 & & 10 12 14 16 18

log2icounts)

Computing Mean, Dispersion and Fold Change

In order to better characterize the data, we consider the mean and the dispersion of the normalized
counts. The variance of read counts is given by the sum of two terms: the variation across samples
(raw variance) and the uncertainty of measuring the expression by counting reads (shot noise or
Poisson). The raw variance term dominates for highly expressed genes, whereas the shot noise
dominates for lowly expressed genes. You can plot the empirical dispersion values against the mean
of the normalized counts in a log scale as shown below.

% consider the mean

meanTreated = mean(normCounts(:,treated),2);
meanUntreated = mean(normCounts(:,untreated),?2);

2-49

2 High-Throughput Sequence Analysis

2-50

% consider the dispersion
dispTreated = std(normCounts(:,treated),0,2) ./ meanTreated;
dispUntreated = std(normCounts(:,untreated),0,2) ./ meanUntreated;

% plot on a log-log scale

figure;

loglog(meanTreated,dispTreated, 'r.");

hold on;

loglog(meanUntreated,dispUntreated, 'b.");
xlabel('log2(Mean)"');

ylabel('log2(Dispersion)"');
legend('Treated', 'Untreated’', 'Location', 'southwest');

log2{Dispersion)
=]
[o&]

—
=
L

107 3
* Treated ¢ - .
* Untreated
1'}-5 | N i
10° 10° 10*

log2(Mean)

108

Given the small number of replicates, it is not surprising to expect that the dispersion values scatter
with some variance around the true value. Some of this variance reflects sampling variance and some

reflects the true variability among the gene expressions of the samples.

You can look at the difference of the gene expression among two conditions, by calculating the fold
change (FC) for each gene, i.e. the ratio between the counts in the treated group over the counts in
the untreated group. Generally these ratios are considered in the log2 scale, so that any change is
symmetric with respect to zero (e.g. a ratio of 1/2 or 2/1 corresponds to -1 or +1 in the log scale).

% compute the mean and the log2FC

meanBase = (meanTreated + meanUntreated) / 2;
foldChange = meanTreated ./ meanUntreated;
log2FC = log2(foldChange);

Identifying Differentially Expressed Genes from RNA-Seq Data

% plot mean vs. fold change (MA plot)
mairplot(meanTreated, meanUntreated, 'Type', 'MA', 'Plotonly', true);

set(get(gca, 'Xlabel'), 'String', 'mean of normalized counts"')
set(get(gca, 'Ylabel'), 'String', 'log2(fold change)"')

Warning: Zero values are ignored

MA plot

log2(fold change)

A r .

4 G 8 10 12 14

mean of normalized counts

16

18

It is possible to annotate the values in the plot with the corresponding gene names, interactively
select genes, and export gene lists to the workspace by calling the mairplot function as illustrated

below:
mairplot(meanTreated,meanUntreated, 'Labels',geneCountTable.ID,

Warning: Zero values are ignored

|Type|’ IMAI);

2-51

2 High-Throughput Sequence Analysis

Mormalize

|:| Showw smoath curve

Lp Regulsted Genes

FEgn000000:3 ~
FEgn0000044
1= P g R et s e e P g e FEQn0000045
FEgn0000071
FEgn0000116
FEgn0000287
FEgn0000S00
FEn0000659
= FEgnoont 224
T e = L S R e - L e LT TE PR FEgno001 225
FEgn0o01 226
FEgn0001229
FEQnoo01 254
FEond001 313 N

Dowen Regulated Genes

FEgn0000015 A
FEgnO000061
4T 1 | [FEgnoooooTs
FEign0000074
FEgn0000099
&t 1 FEgn0000408
FEgnO000SE7
: : : : : : : : : : FEgnO000S77
0 2 4 6 8 10 12 14 16 18 FEgni000534
A FEgn000 137
FEgn000 150
FEgn0001 235
FEgnO00 253
FEcn0001 967 >

Threshald

Showy factor lines

Fold change 2 Update Reset Export... Clear

It is convenient to store the information about the mean value and fold change for each gene in a
table. You can then access information about a given gene or a group of genes satisfying specific
criteria by indexing the table by gene names.

% create table with statistics about each gene
geneTable = table(meanBase,meanTreated,meanUntreated, foldChange, log2FC);
geneTable.Properties.RowNames = geneCountTable.ID;

% summary
summary (geneTable)

2-52

Identifying Differentially Expressed Genes from RNA-Seq Data

Variables:

meanBase: 11609x1 double

Values:
Min 0.21206
Median 201.24
Max 2.6789e+05

meanTreated: 11609x1 double

Values:
Min 0
Median 201.54
Max 2.5676e+05

meanUntreated: 11609x1 double

Values:
Min 0
Median 199.44
Max 2.7903e+05

foldChange: 11609x1 double

Values:
Min 0
Median 0.99903
Max Inf

log2FC: 11609x1 double

Values:
Min -Inf
Median -0.001406
Max Inf

% preview
geneTable(1:10,:)

ans =
10x5 table
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0000003 0.9475 1.3808 0.51415 2.6857 1.4253
FBgn0000008 132.69 129.48 135.9 0.95277 -0.069799
FBgn0OOOO14 15.111 13.384 16.838 0.79488 -0.33119

2-53

2 High-Throughput Sequence Analysis

2-54

FBgnGOOOO15 1.7738 0.42413 3.1234 0.13579 -2.8806
FBgnGOOOO17 5634.6 5117.4 6151.8 0.83186 -0.26559
FBgnGOOOO18 514.08 505.48 522.67 0.96711 -0.048243
FBgn0000024 7.2354 8.7189 5.752 1.5158 0.60009
FBgn0OOOO28 0.74465 1.4893 0 Inf Inf
FBgnGOOOO32 1206.3 1206.2 1206.4 0.99983 -0.00025093
FBgnGOOOO36 0.21206 0.42413 0 Inf Inf

% access information about a specific gene
myGene = 'FBgn0261570"';

geneTable(myGene, :)

geneTable(myGene, { 'meanBase', 'log2FC'})

% access information about a given gene list
myGeneSet = {'FBgn0261570', 'FBgn0261573"', 'FBgn0261575"', 'FBgn0261560"'};
geneTable(myGeneSet, :)

ans =
1x5 table
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0261570 4435.5 4939.1 3931.8 1.2562 0.32907
ans =
1x2 table
meanBase log2FC
FBgn0261570 4435.5 0.32907
ans =
4x5 table
meanBase meanTreated meanUntreated foldChange log2FC
FBgn0261570 4435.5 4939.1 3931.8 1.2562 0.32907
FBgn0261573 2936.9 2954.8 2919.1 1.0122 0.01753
FBgn0261575 4.3776 5.6318 3.1234 1.8031 0.85047
FBgn0261560 2041.1 1494.3 2588 0.57738 -0.7924

Inferring Differential Expression with a Negative Binomial Model

Determining whether the gene expressions in two conditions are statistically different consists of
rejecting the null hypothesis that the two data samples come from distributions with equal means.
This analysis assumes the read counts are modeled according to a negative binomial distribution (as

Identifying Differentially Expressed Genes from RNA-Seq Data

proposed in [3]). The function nbintest performs this type of hypothesis testing with three possible
options to specify the type of linkage between the variance and the mean.

By specifying the link between variance and mean as an identity, we assume the variance is equal to
the mean, and the counts are modeled by the Poisson distribution [4].

tIdentity = nbintest(counts(:,treated),counts(:,untreated), 'VarianceLink', 'Identity');
h = plotVariancelLink(tIdentity);

% set custom title
h(1l).Title.String
h(2).Title.String

'Variance Link on Treated Samples';
'Variance Link on Untreated Samples';

Variance Link on Treated Samples

* Dbserved H
Identity

108

104

102

107

Common Scale Variance

1072

Common Scale Mean

2-55

2 High-Throughput Sequence Analysis

Variance Link on Untreated Samples

= Ohbserved 2 gt € o
Identity i

Common Scale Variance

10° 102 104
Common Scale Mean

Alternatively, by specifying the variance as the sum of the shot noise term (i.e. mean) and a constant
multiplied by the squared mean, the counts are modeled according to a distribution described in [5].
The constant term is estimated using all the rows in the data.

tConstant = nbintest(counts(:,treated),counts(:,untreated), 'VarianceLink', 'Constant');
h = plotVariancelLink(tConstant);

% set custom title
h(1l).Title.String
h(2).Title.String

'Variance Link on Treated Samples';
'Variance Link on Untreated Samples';

2-56

Identifying Differentially Expressed Genes from RNA-Seq Data

Common Scale Variance

Variance Link on Treated Samples

Observed
Constant

Common Scale Mean

2-57

2 High-Throughput Sequence Analysis

Variance Link on Untreated Samples

= ODhserved #
Constant "

Common Scale Variance

e o ol
’ﬁ o o o o
:Hhh“ 2 B, %, 8

109 102 104
Common Scale Mean

Finally, by considering the variance as the sum of the shot noise term (i.e. mean) and a locally
regressed non-parametric smooth function of the mean, the counts are modeled according to the
distribution proposed in [3].

tLocal = nbintest(counts(:,treated),counts(:,untreated), 'VarianceLink', 'LocalRegression');
h = plotVarianceLink(tLocal);

% set custom title
h(1l).Title.String
h(2).Title.String

'Variance Link on Treated Samples';
'Variance Link on Untreated Samples';

2-58

Identifying Differentially Expressed Genes from RNA-Seq Data

Common Scale Variance

Variance Link on Treated Samples

Observed
e |_pcal Regression

Common Scale Mean

2-59

2 High-Throughput Sequence Analysis

Variance Link on Untreated Samples

= Observed e mae®l o
e |_pcal Regression ; s

Common Scale Variance

109 102 104
Common Scale Mean

In order to evaluate which fit is the best for the data in consideration, you can compare the fitting
curves in a single plot, as shown below.

h = plotVarianceLink(tLocal, 'compare',true);

% set custom title
h(1l).Title.String
h(2).Title.String

'Variance Link on Treated Samples';
'Variance Link on Untreated Samples';

2-60

Identifying Differentially Expressed Genes from RNA-Seq Data

Common Scale Variance

Variance Link on Treated Samples

= Observed
= |_pcal Regression
Constant
Identity

Common Scale Mean

2-61

2 High-Throughput Sequence Analysis

Variance Link on Untreated Samples

= Observed
= |_pcal Regression
Constant .
Identity

&5

S 10

=

w

=

ik}

=

[]

43

[

(=]

g

3 10)

& Bef
nn, tﬁ uE:“u . q: ™ . %
10° 102 104

Common Scale Mean

The output of nbintest includes a vector of P-values. A P-value indicates the probability that a
change in expression as strong as the one observed (or even stronger) would occur under the null
hypothesis, i.e. the conditions have no effect on gene expression. In the histogram of the P-values we
observe an enrichment of low values (due to differentially expressed genes), whereas other values are
uniformly spread (due to non-differentially expressed genes). The enrichment of values equal to 1 are
due to genes with very low counts.

figure;
histogram(tLocal.pValue, 100)
xlabel('P-value')
ylabel('Frequency"')
title('P-value enrichment')

2-62

Identifying Differentially Expressed Genes from RNA-Seq Data

P-value enrichment
'1 E.DD T T T T T T T T T T T

1600]

1400 [1

1200]

Frequency
=
2
—

800]

600]

400]

2001]

W] 04 02 03 04 05 06 07 08 09 1
P-value

Filter out those genes with relatively low count to observe a more uniform spread of non-significant P-
values across the range (0,1]. Note that this does not affect the distribution of significant P-values.

lowCountThreshold = 10;

lowCountGenes = all(counts < lowCountThreshold, 2);
histogram(tLocal.pValue(~lowCountGenes), 100)
xlabel('P-value')

ylabel('Frequency"')

title('P-value enrichment without low count genes')

2-63

2 High-Throughput Sequence Analysis

2-64

P-value enrichment without low count genes
'1 E.DD T T T T T T T T T T T

1600]

1400 [1

1200]

b
2
2
=]
T
i

800]

Frequency

600]

400]

2001]

W] 04 02 03 04 05 06 07 08 09 1
P-value

Multiple Testing and Adjusted P-values

Thresholding P-values to determine what fold changes are more significant than others is not
appropriate for this type of data analysis, due to the multiple testing problem. While performing a
large number of simultaneous tests, the probability of getting a significant result simply due to
chance increases with the number of tests. In order to account for multiple testing, perform a
correction (or adjustment) of the P-values so that the probability of observing at least one significant
result due to chance remains below the desired significance level.

The Benjamini-Hochberg (BH) adjustment [6] is a statistical method that provides an adjusted P-value
answering the following question: what would be the fraction of false positives if all the genes with
adjusted P-values below a given threshold were considered significant? Set a threshold of 0.1 for the
adjusted P-values, equivalent to consider a 10% false positives as acceptable, and identify the genes
that are significantly expressed by considering all the genes with adjusted P-values below this
threshold.

% compute the adjusted P-values (BH correction)
padj = mafdr(tLocal.pValue, 'BHFDR',true);

% add to the existing table
geneTable.pvalue = tLocal.pValue;
geneTable.padj = padj;

% create a table with significant genes
sig = geneTable.padj < 0.1;
geneTableSig = geneTable(sig,:);

Identifying Differentially Expressed Genes from RNA-Seq Data

geneTableSig = sortrows(geneTableSig, 'padj');
numberSigGenes = size(geneTableSig,1)

numberSigGenes

1904

Identifying the Most Up-regulated and Down-regulated Genes

You can now identify the most up-regulated or down-regulated genes by considering an absolute fold
change above a chosen cutoff. For example, a cutoff of 1 in log2 scale yields the list of genes that are
up-regulated with a 2 fold change.

% find up-regulated genes

up = geneTableSig.log2FC > 1;

upGenes = sortrows(geneTableSig(up,:), 'log2FC', 'descend"');
numberSigGenesUp = sum(up)

% display the top 10 up-regulated genes
topl0GenesUp = upGenes(1:10,:)

% find down-regulated genes

down = geneTableSig.log2FC < -1;

downGenes = sortrows(geneTableSig(down,:), 'log2FC', 'ascend');
numberSigGenesDown = sum(down)

% find top 10 down-regulated genes
topl0GenesDown = downGenes(1:10,:)

numberSigGenesUp =
129
toplOGenesUp =
10x7 table
meanBase meanTreated meanUntreated foldChange log2FC pvalue
FBgn0030173 3.3979 6.7957 0 Inf Inf 0.006311!
FBgn0036822 3.1364 6.2729 0 Inf Inf 0.01220:
FBgn0052548 8.158 15.269 1.0476 14.575 3.8654 0.0001694!
FBgn0050495 6.8315 12.635 1.0283 12.287 3.6191 0.001894
FBgn0063667 20.573 38.042 3.1042 12.255 3.6153 8.5037e-0:
FBgn0033764 91.969 167.61 16.324 10.268 3.3601 1.8345e-2!
FBgn0037290 85.845 155.46 16.228 9.5801 3.26 3.5583e-2!
FBgn0033733 7.4634 13.384 1.5424 8.6773 3.1172 0.0027271
FBgn0037191 7.1766 12.753 1.6003 7.9694 2.9945 0.004780:
FBgn0033943 6.95 12.319 1.581 7.7921 2.962 0.005363!
numberSigGenesDown =

2-65

2 High-Throughput Sequence Analysis

181
toplOGenesDown =
10x7 table

meanBase meanTreated meanUntreated foldChange log2FC pvalue
FBgn0053498 15.469 0 30.938 0 -Inf 9.8404e-
FBgn0259236 6.8092 0 13.618 0 -Inf 1.5526e-!
FBgn0052500 4.3703 0 8.7405 0 -Inf 0.000667
FBgn0039331 3.6954 0 7.3908 0 -Inf 0.00195!
FBgn0040697 3.419 0 6.8381 0 -Inf 0.00273
FBgn0034972 2.9145 0 5.8291 0 -Inf 0.00685
FBgn0040967 2.6382 0 5.2764 0 -Inf 0.00960:
FBgn0031923 2.3715 0 4.7429 0 -Inf 0.0161
FBgn0085359 62.473 2.9786 121.97 0.024421 -5.3557 5.5813e-:
FBgn0004854 7.4674 0.53259 14.402 0.03698 -4.7571 8.1587e-

A good visualization of the gene expressions and their significance is given by plotting the fold
change versus the mean in log scale and coloring the data points according to the adjusted P-values.

figure
scatter(log2(geneTable.meanBase),geneTable.log2FC,3,geneTable.padj, '0")
colormap(flipud(cool(256)))

colorbar;

ylabel('log2(Fold Change)"')

xlabel('log2(Mean of normalized counts)')

title('Fold change by FDR')

2-66

Identifying Differentially Expressed Genes from RNA-Seq Data

Fold change by FDR

4r 1
ar 0.8
27 0.8
1r 0.7

i

g

g Uf 0.6

L

o

o -17T 0.5

=]

w

o 21 0.4

n

i=]
a3t 0.3
4 F 5 0.2
5t ’ 0.1
—Fﬁ i i i i i D

-5 0 5 10 15 20

log2{Mean of normalized counts)

You can see here that for weakly expressed genes (i.e. those with low means), the FDR is generally
high because low read counts are dominated by Poisson noise and consequently any biological
variability is drowned in the uncertainties from the read counting.

References

[1] Brooks et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome
Research 2011. 21:193-202.

[2] Mortazavi et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature
Methods 2008. 5:621-628.

[3] Anders et al. Differential expression analysis for sequence count data. Genome Biology 2010.
11:R106.

[4] Marioni et al. RNA-Seq: An assessment of technical reproducibility and comparison with gene
expression arrays. Genome Research 2008. 18:1509-1517.

[5] Robinson et al. Moderated statistical test for assessing differences in tag abundance.
Bioinformatics 2007. 23(21):2881-2887.

[6] Benjamini et al. Controlling the false discovery rate: a practical and powerful approach to multiple
testing. 1995. Journal of the Royal Statistical Society, Series B57 (1):289-300.

See Also
featurecount |mairplot | nbintest | plotVariancelLink

2-67

2 High-Throughput Sequence Analysis

More About
. “High-Throughput Sequencing”

2-68

Visualize NGS Data Using Genomics Viewer App

Visualize NGS Data Using Genomics Viewer App

The Genomics Viewer app lets you view and explore integrated genomic data with an embedded
version of the Integrative Genomics Viewer (IGV) [1][2]. The genomic data include NGS read
alignments, genome variants, and segmented copy number data.

The first part of this example gives a brief overview of the app and supported file formats. The second
part of the example explores a single nucleotide variation in the cytochrome p450 gene (CYP2C19).

Open the App

At the command line, type genomicsViewer. Alternatively, click the app icon on the Apps tab. The
app requires an internet connection.

By default, the app loads Human (GRCh38/hg38) as the reference sequence and Refseq Genes as the

annotation file. There are two main panels in the app. The left panel is the Tracks panel and the right
panel is the embedded IGV web application. The Track panel is a read-only area displaying the track

names, source file names, and track types. The Track panel updates accordingly as you configure the
tracks in the embedded IGV app.

Tracks Panel | Embedded Integrative Genomics Viewer (IGV) |

) o &
mport Reference Add tracks Help

hg3s | al v a sor Guide Track Labels
File Type IGv Q

&0

Zoom in to see features

The Reset button restores the app to the default view with two tracks (HG38 with Refseq Genes) and
removes any other existing tracks. Before resetting, you can save the current view as a session
(.json) file and restore it later.

Add Tracks by Importing Data
Import Reference Sequence

You can import a single reference sequence. The reference sequence must be in a FASTA file. Select
Import Reference on the Home tab. You can also import a corresponding cytoband file that contains

2-69

https://igv.org/app/

2 High-Throughput Sequence Analysis

2-70

cytogenetic G-banding data. You can add local files or specify external URLs. The URL must start with
either https or gs. Other file transfer protocols, such as ftp, are not supported.

Import Sequence Read Alignment Data

You can import multiple data sets of sequence read alignment data. The alignment data must be a
BAM or CRAM file. It is not required that you have the corresponding index file (. BAI or .CRAI) in
the same location as your BAM or CRAM file. However, the absence of the index file will make the
app slower.

You can add read alignment files using Add tracks from file and Add tracks from URL options
from the Add tracks button. If you are specifying a URL, the URL must start with either https or gs.
Other file transfer protocols, such as ftp, are not supported.

Import Feature Annotations and Other Genomic Data

You can import multiple sets of feature annotations from several files that contain data for a single
reference sequence. The supported annotation files are: .BED, .GFF, .GFF3, and .GTF.

You can also import structural variants (.VCF) and visualize genetic alterations, such as insertions
and deletions.

You can view segmented copy number data (. SEG) and quantitative genomic data (.WIG, .BIGWIG,
and .BEDGRAPH), such as ChIP peaks and alignment coverage.

You can add annotation and genomic data files using Add tracks from file and Add tracks from
URL options from the Add tracks button. If you are specifying a URL, the URL must start with either
https or gs. Other file transfer protocols, such as FTP, are not supported.

Visualize Single Nucleotide Variation in Cytochrome P450

The CYP2C19 gene is a member of the cytochrome P450 gene family. Enzymes produced from
cytochrome P450 genes are involved in the metabolism of various molecules and chemicals within
cells. The CYP2C19 enzyme plays a role in the metabolizing of at least 10 percent of commonly
prescribed drugs [3]. Polymorphisms in the cytochrome p450 family may cause adverse drug
responses in individuals. One example of single nucleotide variation is rs4986893 at position
chr10:94,780,653 where G is replaced by A. This allelic variant is also known as CYP2C19*3. The
following steps show how to visualize such variation in the app using both low coverage and high
coverage data.

Load Session File

For the purposes of this example, start with a session file that has some preloaded tracks. To load the
file, click Open. Navigate to matlabroot\examples\bioinfo\, where matlabroot is the folder
where you have installed MATLAB. Select rs4986893. json.

Visualize NGS Data Using Genomics Viewer App

OHD

HOME

& | =] @
Open Save Reset Import Reference | Add tracks Help

SESSION TRACKS RESOURCES =
[RACKS |GV hoe [crio nr10:94,780,635-04,780,672 Q38 by (- +]
Name File Type
1 Human (GRCh3g/hg38) hg3tfa TEHIEIEE ('l T) =N I &I EEENE'EE EI =)

2 NA18564 NA18564.alt_bwamem_GRCh38DH.20150718.CHB.low_c... alignment

w

Refseq Genes

refGene.sorted.ixt gz TS T 10,835 bp 94.780.840 bp 94.780.845 bp 84,730,850 bp 94,780,855 bp 84,730,600 bp 84730605 bp 04730670 bp

GATTGTAAGGAGCGGCGCTGOGGBATGCCAGGTAAGGOG GG AAGTTIR

21 ¢
a

GATTOGTAA CACCCCCTOGOGATC CCAGOGTAAGGSGCCAAGTT

GATTGTAAGGCACGCCCCTGOGATGCGCGCA ¢ Cc

G ATTGTAAG G A C € G C
CACCCCCTOGOGATCCASGOGTAAGGSGCCAAGTT

G ATTGTAA c ccCeCcCCCTOGAATCCAGSOSTAAGSCCAAGSTT

G ATTGTAA C ACCGCCCTOGOGATG CGCAGGTAAGG CGCAAGTT

GATTOGTAAGCACCGCCCTSAATCGCCAGSGETAAGSCGCAAGTT

GATTGOGTAAGCACCCC TG G TCCAG TAAGGCCAAGTT

Refseq Genes o " " " *

CYFICI

The session contains three tracks:

* Human (GRCh38/hg38) as a reference
* NAI18564 as low coverage alignment data
* Refseq Genes

The low coverage alignment data comes from a female Han Chinese from Beijing, China. The sample
ID is NA18564 and the sample has been identified with the CYP2C19*3 mutation [4].

Explore Low Coverage Data

In this session file, the alignment data has been centered around the location of the mutation on the
CYP2C19 gene.

1 Click the orange bar in the coverage area to look at the position and allele distribution
information.

2-71

2 High-Throughput Sequence Analysis

94.?30.IE-ED bp 94.?30.IE-ED bp

CCCTGGATT® CTCAGGTA

xX
chr10:94, 780,653
Total Count 7

A 2(29%, 0+, 2-)
co
G 5(71%, 2+ 3-)
TO
N 0

It shows that 71% of the reads have G while 29% have A at the location chr10:94,780,653. This
data is a low coverage data and may not show all the occurrences of this mutation. A high
coverage data will be explored later in the example.

Close the data tip window.

2 You can customize the various aspects of the data display in the app. For example, you can

change the track height to make more room for later tracks. Click the second gear icon. Select
Set track height. Enter 200.

'EI4.TE-CI.IETE' bp

caracTTT |SX

x|
Set track name
Set track height @

Set track color
Color by

read strand

first-of-pair strand
» pair orientation
fragment length
tag
+ Show all bases
View as pairs

Show soft clips

Set visibility window

Remove track

2-72

Visualize NGS Data Using Genomics Viewer App

For details on the embedded IGV app and its available options, visit here.
Explore High Coverage Data
You can look at the high coverage data from the same sample to see the occurrences of this mutation.

Go to The International Genome Sample Resource website.
Search for the sample NA18564.
Download the Exome alignment file that is in the . CRAM format.

Also download the corresponding index file that is in the . CRAI format. Save the file in the same
location as the source . CRAM file.

5 Click the (+) icon on the Home tab. Select the downloaded . CRAM file and click Open.

oD & ¢ @

Open Save Reset ImportReference Addtracks — Help

A W N -

SESSION TRACKS RESOURCES e

TRACKS F e m
IGV hes [enrio v| | cnrioos 78063494 780,673 @ 40bp (cusorsuie) (Ccomrine) (D @ ©

Name File Type . e e e

1| Fman (GRENSDGIN T bosi e Sepence (N T T > ' BN §F S EN IS Wy N

5 NALS564 NA18564.alt_bwamem_GRCh38DH. 20150718.CHE.low_covera... alignmert

3 track3 NA18564.alt_bwamem_GRCh38DH.20150826.CHB.exome.cram alignment 94,780,040 bp 94,750 c90 by 24.780,000.08 BT8O0 by
4 Refseq Genes refGene.sorted txt.gz annotation GO ATTGTAAGBGCACCCCCTOOATCCAOOTAAGBGGccAASTT TRS
0 (pNATE564]
0
660 ATTOTAA € ACCCCETOO0OATCCAOGTAAGOCCAAGTTT
66 ATTOTARA G ACCCCCTOOATCCAGOOTAAGDGCCAAGTTT
66 ATTOTAR A S A G C e CIE T O O TAL T CE G T = =r=
@6 ATTOTARA Accce
CACCCCETOOATCCAOGTAAGOCCAASTTT
66 ATTOTAR c €CCCCTOAATCCAGOGTAAGBSGCGCAAGTTT
80 ATTOTAAGCACCCECECTOAATCCAOOGTAAOGODCCAAGTTT
00 AT TOTAAGCAGCCCCCTOOATECCAD TAAGQGCCAAGTTT

} o

e
A
A
A
T
A
A
A
A
A
o Refseq Genes — e

CrPCie

The high coverage data appears as track3. You can now see many occurrences of the mutation in
several reads.

6 Click the orange bar in the coverage area to see the allele distribution. It shows that G is
replaced by A in almost 50% of the time.

2-73

https://igvteam.github.io/igv-webapp/
https://www.internationalgenome.org/

2 High-Throughput Sequence Analysis

2-74

®

chrl0:94, 780 653
Total Count 161

A 79 (49%, T+, 72-)
ic o
G 82 (51%, 10+, 72-)
TO
N O

References

[1] Robinson, J., H. Thorvaldsdéttir, W. Winckler, M. Guttman, E. Lander, G. Getz,]J. Mesirov. 2011.
Integrative Genomics Viewer. Nature Biotechnology. 29:24-26.

[2] Thorvaldsdottir, H.,]. Robinson, J. Mesirov. 2013. Integrative Genomics Viewer (IGV): High-
performance genomics data visualization and exploration. Briefings in Bioinformatics.
14:178-192.

[3] https://ghr.nlm.nih.gov/gene/CYP2C19
[4] https://www.coriell.org/0/Sections/Search/Sample Detail.aspx?Ref=NA18564&Product=DNA

See Also
Genomics Viewer | Sequence Alignment | Sequence Viewer

https://ghr.nlm.nih.gov/gene/CYP2C19
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA18564&Product=DNA

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide or amino acid
sequence using computational methods. Common tasks in sequence analysis are identifying genes,
determining the similarity of two genes, determining the protein coded by a gene, and determining
the function of a gene by finding a similar gene in another organism with a known function.

+ “Exploring a Nucleotide Sequence Using Command Line” on page 3-2

* “Exploring a Nucleotide Sequence Using the Sequence Viewer App” on page 3-15

* “Explore a Protein Sequence Using the Sequence Viewer App” on page 3-26

* “Compare Sequences Using Sequence Alignment Algorithms” on page 3-30

* “View and Align Multiple Sequences” on page 3-43

3 Sequence Analysis

Exploring a Nucleotide Sequence Using Command Line

3-2

In this section...

“Overview of Example” on page 3-2

“Searching the Web for Sequence Information” on page 3-2
“Reading Sequence Information from the Web” on page 3-4
“Determining Nucleotide Composition” on page 3-5
“Determining Codon Composition” on page 3-8

“Open Reading Frames” on page 3-11

“Amino Acid Conversion and Composition” on page 3-13

Overview of Example

After sequencing a piece of DNA, one of the first tasks is to investigate the nucleotide content in the
sequence. Starting with a DNA sequence, this example uses sequence statistics functions to
determine mono-, di-, and trinucleotide content, and to locate open reading frames.

Searching the Web for Sequence Information

The following procedure illustrates how to use the MATLAB Help browser to search the Web for
information. In this example you are interested in studying the human mitochondrial genome. While
many genes that code for mitochondrial proteins are found in the cell nucleus, the mitochondrial has
genes that code for proteins used to produce energy.

First research information about the human mitochondria and find the nucleotide sequence for the
genome. Next, look at the nucleotide content for the entire sequence. And finally, determine open
reading frames and extract specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command Window, type
web('http://www.ncbi.nlm.nih.gov/")

A separate browser window opens with the home page for the NCBI Web site.

2 Search the NCBI Web site for information. For example, to search for the human mitochondrion
genome, from the Search list, select Genome , and in the Search list, enter mitochondrion
homo sapiens.

;-3 NCBl Rescurces (i) How To 3

|mrtnchnndnon homo sapiens @ Clear

% NCB] Search | Genoms =l

The NCBI Web search returns a list of links to relevant pages.

Exploring a Nucleotide Sequence Using Command Line

; 'L’;
o S M S

SGenome
Protein Genome Structure OMIM PMC
Search | Genome

;I for |m'rtnchnndrion homo sapiens| Go | Clear | Save Search

r Limits T Preview/Index T History T Clipkoard T Detailz \I

Dizplay |Summar§,' ;I Show |23 ;”Sendtn ;I

All: 48 \

Items 1 - 20 of 48

Page ||1 of 3 Next

[1: NC 003415

Links
Ancylostoma duodenale mitochondrion, complete genome

DHA; circular; Length: 13,721 nt

Organelle: mitochondrion

Created: 2002/02/21

Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human mitochondrial genome.

3-3

3

Sequence Analysis

3-4

cunk ol —“ —lz .j}éé nome [g|[Registe

Genome Structure OMIM PMC

Protein Journals Books
Search | Genome = far | Go I Clearl
|I Lirnits | Preview/Index | History | Clipkeard | Details |
Display IO'\.’ewie',',' ;I Show I 20 ;I I Send to ;I
[an:t \
Genome > Eukaryota > Homo sapiens mitochondrion, complete genome Links

Lineage: Eukaryota: Fungi/Metazoa group: Metazoa: Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata
Teleostomi: Euteleostomi: Sarcopteryqii; Tetrapoda: Amnicta; Mammalia; Theria; Eutheria; Euarchontoglires: Primates; Haplorrhini: Simiifermes; Catarrhini
Hominoidea: Haminidas: Homininae: Homao: Homo sapigns

Genome Info: | Features: ST Links: Review Info:
homologs:
REET, Genes: 37 Genome Project Publications: [2Z]
MC_012920 = ’
GenBank: Protein o .
101415 coding: 13 Refseq Status: PROVISIONAL
Length: Structural y P .
16.569 nt RNAs: 24 TaxPlot Seq.Status: Completed

olecular and Mitochondrial
&) University of California,

Sequencing center: Center for M
Medicine and Genetics (MAl

GC Content: Pseuda

Lur IETEELETE University of California, Irvine, Mitomap.org, USA, Invine
o, 0 i -
a2 others: 30 Completed: 2009/07/08
Topology: Contigs:
circular None
Molecule: Other genomes for
dsDNA species: 5683
Gene Classification kased on COG functional categories Search gene, GenelD or I-:ncus_tag:l Find Gene |
_‘ o ’ 185m}lnt
1nt 5,511 nt N * - /
-
> > —)=
> P VS
. RNRT g RNR2 4 » ”’---I ™~

" o

Click here for Sequence Viewer presentation (hase sequence and aligned amino acids) of selected region

Display IO'«er\.ﬂie','{ ;I Show I 20 ;I I Send to ;I

Reading Sequence Information from the Web

The following procedure illustrates how to find a nucleotide sequence in a public database and read
the sequence information into the MATLAB environment. Many public databases for nucleotide
sequences are accessible from the Web. The MATLAB Command Window provides an integrated
environment for bringing sequence information into the MATLAB environment.

The consensus sequence for the human mitochondrial genome has the GenBank accession number
NC 012920. Since the whole GenBank entry is quite large and you might only be interested in the
sequence, you can get just the sequence information.

Exploring a Nucleotide Sequence Using Command Line

Get sequence information from a Web database. For example, to retrieve sequence information
for the human mitochondrial genome, in the MATLAB Command Window, type

mitochondria = getgenbank('NC _012920', 'SequenceOnly', true)

The getgenbank function retrieves the nucleotide sequence from the GenBank database and
creates a character array.

mitochondria =
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGT .

If you don't have a Web connection, you can load the data from a MAT file included with the
Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB Workspace.
Get information about the sequence. Type

whos mitochondria
Information about the size of the sequence displays in the MATLAB Command Window.
Name Size Bytes C(lass Attributes

mitochondria 1x16569 33138 char

Determining Nucleotide Composition

The following procedure illustrates how to determine the monomers and dimers, and then visualize
data in graphs and bar plots. Sections of a DNA sequence with a high percent of A+T nucleotides
usually indicate intergenic parts of the sequence, while low A+T and higher G+C nucleotide
percentages indicate possible genes. Many times high CG dinucleotide content is located before a
gene.

After you read a sequence into the MATLAB environment, you can use the sequence statistics
functions to determine if your sequence has the characteristics of a protein-coding region. This
procedure uses the human mitochondrial genome as an example. See “Reading Sequence Information
from the Web” on page 3-4.

1

Plot monomer densities and combined monomer densities in a graph. In the MATLAB Command
Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

3 Sequence Analysis

3-6

Nucleotide density

01F

0

0.7

2000

4000

G000

8000 10000 12000 14000 16000 18000

A-T C-G density

0.3

0.5t
0.4 WWM

0

2000 4000 G000 8000 10000 12000 14000 16000 18000

Count the nucleotides using the basecount function.

basecount (mitochondria)

A list of nucleotide counts is shown for the 5'-3' strand.

ans
5124
5181
2169
4094

o0 x>l

Count the nucleotides in the reverse complement of a sequence using the seqrcomplement

function.

basecount(seqrcomplement(mitochondria))

As expected, the nucleotide counts on the reverse complement strand are complementary to the

5'-3"' strand.

ans
4094
2169
5181
: 5124

—on>x>l

Use the function basecount with the chart option to visualize the nucleotide distribution.

figure

basecount(mitochondria, 'chart', 'pie');

A pie chart displays in the MATLAB Figure window.

Exploring a Nucleotide Sequence Using Command Line

Count the dimers in a sequence and display the information in a bar chart.

figure

dimercount(mitochondria, 'chart', 'bar')

ans

: 1604
: 1495
: 795
: 1230
: 1534
1 1771
: 435
: 1440
: 613
: 711
1 425
: 419
: 1373
: 1204
: 513
: 1004

3 Sequence Analysis

2000 _

1500 |

1000

200 |

First Base A

Second Base

Determining Codon Composition

The following procedure illustrates how to look at codons for the six reading frames. Trinucleotides
(codon) code for an amino acid, and there are 64 possible codons in a nucleotide sequence. Knowing
the percent of codons in your sequence can be helpful when you are comparing with tables for
expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the sequence for codon
composition. This procedure uses the human mitochondria genome as an example. See “Reading
Sequence Information from the Web” on page 3-4.

1 Count codons in a nucleotide sequence. In the MATLAB Command Window, type
codoncount(mitochondria)

The codon counts for the first reading frame displays.

AAA - 167 AAC - 171 AAG - 71 AAT - 130
ACA - 137 ACC - 191 ACG - 42 ACT - 153
AGA - 59 AGC - 87 AGG - 51 AGT - 54
ATA - 126 ATC - 131 ATG - 55 ATT - 113
CAA - 146 CAC - 145 CAG - 68 CAT - 148
CCA - 141 CCC - 205 CCG - 49 CCT - 173
CGA - 40 CGC - 54 CGG - 29 CGT - 27
CTA - 175 CTC - 142 CTG - 74 CTT - 101
GAA - 67 GAC - 53 GAG - 49 GAT - 35
GCA - 81 GCC - 101 GCG - 16 GCT - 59
GGA - 36 GGC - 47 GGG - 23 GGT - 28
GTA - 43 GTC - 26 GTG - 18 GTT - 41

3-8

Exploring a Nucleotide Sequence Using Command Line

TAA - 157 TAC - 118 TAG - 94 TAT - 107
TCA - 125 TCC - 116 TCG - 37 TCT - 103
TGA - 064 TGC - 40 TGG - 29 TGT - 26
TTA - 96 TTC - 107 TG - 47 TTT - 78

Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3
figure
subplot(2,1,1);
codoncount(mitochondria, 'frame', frame, 'figure',true,...
'geneticcode', 'Vertebrate Mitochondrial');
title(sprintf('Codons for frame %d',frame));
subplot(2,1,2);
codoncount(mitochondria, 'reverse',true, 'frame', frame, ...
'figure',true, 'geneticcode', 'Vertebrate Mitochondrial');
title(sprintf('Codons for reverse frame %d', frame));
end

Heat maps display all 64 codons in the 6 reading frames.

Codons for frame 1

AAR | AAC | ACA ACC | CAA | CAC [CCA ccCC 200
150
100
50

Genetic Code: Verebrate Mitochondrial
Codons for reverse frame 1

200
150
100
50

GGG GGT | GIG . GTT J TGG | IGT | TIG | TIT

Genetic Code: Vertebrate Mitochondrial

3 Sequence Analysis

3-10

Codons for frame 2

200

150

100

50

Genetic Code: Verebrate Mitochondrial

Codons for reverse frame 2
200

150

100

50

GGG GGT | GTG GTT JTGG | TGT | TTG | TIT

Genetic Code: Verebrate Mitochondrial

Exploring a Nucleotide Sequence Using Command Line

Codons for frame 3

200

AAR | AAC | ACA ACC | CAA | CAC | CCA CCC

100
50
Genetic Code: Vertebrate Mitochondrial
Codons for reverse frame 3
200
150
100

Genetic Code: Vertebrate Mitochondrial

Open Reading Frames

The following procedure illustrates how to locate the open reading frames using a specific genetic
code. Determining the protein-coding sequence for a eukaryotic gene can be a difficult task because
introns (noncoding sections) are mixed with exons. However, prokaryotic genes generally do not have
introns and mRNA sequences have the introns removed. Identifying the start and stop codons for
translation determines the protein-coding section, or open reading frame (ORF), in a sequence. Once
you know the ORF for a gene or mRNA, you can translate a nucleotide sequence to its corresponding
amino acid sequence.

After you read a sequence into the MATLAB environment, you can analyze the sequence for open
reading frames. This procedure uses the human mitochondria genome as an example. See “Reading
Sequence Information from the Web” on page 3-4.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the MATLAB Command
Window, type:

3-11

3 Sequence Analysis

3-12

segshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for NC_ 012920, there are fewer
genes than expected. This is because vertebrate mitochondria use a genetic code slightly
different from the standard genetic code. For a list of genetic codes, see the Genetic Code table
in the aa2nt reference page.

Display ORFs using the Vertebrate Mitochondrial code.
orfs= seqshoworfs(mitochondria, ...

'GeneticCode', 'Vertebrate Mitochondrial', ...
'alternativestart', true);

Notice that there are now two large ORFs on the third reading frame. One starts at position 4470
and the other starts at 5904. These correspond to the genes ND2 (NADH dehydrogenase subunit
2 [Homo sapiens]) and COX1 (cytochrome c oxidase subunit I) genes.

Find the corresponding stop codon. The start and stop positions for ORFs have the same indices
as the start positions in the fields Start and Stop.

ND2Start = 4470;
StartIndex = find(orfs(3).Start == ND2Start)
ND2Stop = orfs(3).Stop(StartIndex)

The stop position displays.
ND2Stop =

5511

Using the sequence indices for the start and stop of the gene, extract the subsequence from the
sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed on the screen.

attaatcccctggcccaacccgtcatctactctaccatctttgeaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggectag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgeatc
cataatccttc .

Determine the codon distribution.
codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - ©
ACA - 11 ACC - 24 ACG - 3 ACT - 5
AGA - © AGC - 4 AGG - 0 AGT - 1
ATA - 23 ATC - 24 ATG - 1 ATT - 8
CAA - 8 CAC - 3 CAG - 2 CAT - 1
CCA - 4 ccc - 12 ccG - 2 CCT - 5
CGA - 0 cGC - 3 CGG - 0 CGT - 1
CTA - 26 CTC - 18 CT6 - 4 T - 7
GAA - 5 GAC - 0O GAG - 1 GAT - 0O
GCA - 8 GCC - 7 GCG - 1 GCT - 4
GGA - 5 GGC - 7 GGG - 0 GGT - 1

Exploring a Nucleotide Sequence Using Command Line

GTA - 3 GTC - 2 GTG - 0 GTT - 3
TAA - 0 TAC - 8 TAG - 0 TAT - 2
TCA - 7 TCC - 11 TCG - 1 TCT - 4
TGA - 10 TGC - 0 766 - 1 TGT - 0
TTA - 8 TTC - 7 TTG - 1 TIT - 8

Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))
aminolookup('code',nt2aa('CTA'))
aminolookup('code',nt2aa('ACC'))
aminolookup('code',nt2aa('ATC'))

The following displays:
Ile isoleucine
Leu leucine

Thr threonine
Ile isoleucine

Amino Acid Conversion and Composition

The following procedure illustrates how to extract the protein-coding sequence from a gene sequence
and convert it to the amino acid sequence for the protein. Determining the relative amino acid
composition of a protein will give you a characteristic profile for the protein. Often, this profile is
enough information to identify a protein. Using the amino acid composition, atomic composition, and
molecular weight, you can also search public databases for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to an amino sequence and
determine its amino acid composition. This procedure uses the human mitochondria genome as an
example. See “Open Reading Frames” on page 3-11.

1

Convert a nucleotide sequence to an amino acid sequence. In this example, only the protein-
coding sequence between the start and stop codons is converted.

ND2AASeq = nt2aa(ND2Seq, 'geneticcode’, ...
'Vertebrate Mitochondrial')

The sequence is converted using the Vertebrate Mitochondrial genetic code. Because the
property AlternativeStartCodons is set to 'true' by default, the first codon att is
converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYITILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

Compare your conversion with the published conversion in the GenPept database.
ND2protein = getgenpept('YP 003024027"', 'sequenceonly',true)

The getgenpept function retrieves the published conversion from the NCBI database and reads
it into the MATLAB Workspace.

Count the amino acids in the protein sequence.

3-13

3 Sequence Analysis

aacount (ND2AASeq, 'chart','bar')

A bar graph displays. Notice the high content for leucine, threonine and isoleucine, and also
notice the lack of cysteine and aspartic acid.

70

ARNDCOQEGH I L KMFPSTWYV

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp (ND2AASeq)
molweight (ND2AASeq)

The following displays in the MATLAB Workspace:

ans =
C: 1818
H: 2882
N: 420
0: 471
S: 25
ans =

3.8960e+004

If this sequence was unknown, you could use this information to identify the protein by
comparing it with the atomic composition of other proteins in a database.

3-14

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Exploring a Nucleotide Sequence Using the Sequence Viewer

App

In this section...

“Overview of the Sequence Viewer” on page 3-15

“Importing a Sequence into the Sequence Viewer” on page 3-15
“Viewing Nucleotide Sequence Information” on page 3-17
“Searching for Words” on page 3-19

“Exploring Open Reading Frames” on page 3-22

“Closing the Sequence Viewer” on page 3-25

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics Toolbox
toolbox. Instead of entering commands in the MATLAB Command Window, you can select and enter
options using the app.

Importing a Sequence into the Sequence Viewer

The first step when analyzing a nucleotide or amino acid sequence is to import sequence information
into the MATLAB environment. The Sequence Viewer can connect to Web databases such as NCBI
and EMBL and read information into the MATLAB environment.

The following procedure illustrates how to retrieve sequence information from the NCBI database on
the Web. This example uses the GenBank accession number NM_000520, which is the human gene
HEXA that is associated with Tay-Sachs disease.

Note Data in public repositories is frequently curated and updated; therefore, the results of this
example might be slightly different when you use up-to-date sequences.

1 Inthe MATLAB Command Window, type

seqviewer
Alternatively, click Sequence Viewer on the Apps tab.

The Sequence Viewer opens without a sequence loaded. Notice that the panes to the right and
bottom are blank.

2 To retrieve a sequence from the NCBI database, select File > Download Sequence from >
NCBI.

The Download Sequence from NCBI dialog box opens.

3-15

3 Sequence Analysis

Downlead Sequence from MCEI | X

Enter Sequence Accession Number or Locus Mame

@ Mucleotide () Protein

Ok] ’ Cancel

L A

3 Inthe Enter Sequence box, type an accession number for an NCBI database entry, for example,
NM_000520. Click the Nucleotide option button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads nucleotide sequence
information for the accession number you entered, and calculates some basic statistics.

3-16

Exploring a Nucleotide Sequence Using the Sequence Viewer App

e
4\ Biological Sequence Viewer - NM_000520 =B &
File Edit Sequence Display Window Help | a x
:Q;Q|&‘a|.§|@| Line length: .60 - EED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
NM_UUUSEU: Homeo sapiens| |Pasition: 2751 bp
- S—
ORF 1a z0 30 40 1] &0
) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
g----FuIITransIatmn 1 toacatcaca acgacttgtg grtttaateos CoCgLtLthe COOLTCotOAAa gLUACThOoAaqg it
?wAnnmadeDS 61 eccoctggoaagt cotttaccte coegtaggec tggogagetyg catcacaaca ttcaagatte
- CD5 with Translatio 121 accctagage catctgggaa actbtottet cocagghtcogoe chbgogtocte gooctoocoac
""" Complement Sequence 181 ccogttocttc tegaghbocggy tgagetgbct agtbtcoccatca cggcoccggocac ggccgoaggd
""" Reverse Complement 5 241 grtggecggtt atttactgct ctactgggos cgbgaacadgt cbggogagec gagoagroge
""" Features 301 cgacgccocgy cacaatceoge tgoacgtage aggagoctca ggtccaggoc ggaagtgaaa =
----- Comments 36l gggcagggtyg tgggtectoe tggggtogea ggcgcagage cgochbocbggbt cacgtgatte
471 geocogataagt cacgggggog cogotoacet gaccagggte tcacgtggoc agoococtoo
481 gagaggggag accagoeggge catgacaage tocaggottt ggtttteget getgotggog
541 gragegtbog caggacggge gacggcococtec tggoccobgge cbocagaactt coaaacctoe
E0l gaccageoget acgtcottta coogaacaac ttbcaattce agrtacgatgt cagetoggoo -
c|‘ﬁr] . EELl ygcocygcagecoyg goetgotocagt cotogacgag geoecttocage gotatcgtbga cotgotttte
= 721 ggttecocggghb cttggececocyg tocttacctec acagggaaac ggcatacact ggagaagaat
Base Count 78l grgrtgygttg CoCobgrLagt cacacctgga tgrtaaccage CLOCTACCLD ggagroadgty
. 1= B4l gagaattata ceocctgacecat aaatgatgac cagtgtttac tcctetetga gactgtotogg
A 593 Zl'sf—' 901 ggagctctoo gaggtetgga gacttttage cagebttgttt ggaaatctge tgagggoaca
C: 30 2?'3j5 9l ttetttatca acaagactga gattgaggac tttococgct thoctcacoey gyggettgetg
G: 16 26'01__ 1021 ttggatacat ctegoeatta cctgecacte tetageatece tggacactet ggatgtoatyg
T 632 25.2% 1081 gogtacaata aattgaacgt gttocactgy catctggtag atgatcotto cttococcatat
1141 gagagctteoca cttttoccaga gotocatgaga aaggggtboct acaaccotghb cacccacate
1201 tacacagcac aggatgtgaa JUagygtcatt gaatacgoac gygotocggygy tcatcogogrdg
- 1261 cttgeagagt ttgacactcoe tggocacact ttgtocotggg gaccaggtat cocotggatta
1| 1 & 4 (3 &4
4.7 BP/Pixel | @ x2Zoomin | | &, X2Zoomout |
Map View 1 1000 2000 2751 -
Sequence ol I I I :
CDs
|| 4 [Tl] | »

Viewing Nucleotide Sequence Information

After you import a sequence into the Sequence Viewer app, you can read information stored with

the sequence, or you can view graphic representations for ORFs and CDSs.

1

sequence.

In the left pane tree, click Comments. The right pane displays general information about the

3-17

Sequence Analysis

2 Now click Features. The right pane displays NCBI feature information, including index numbers
for a gene and any CDS sequences.

3

Click ORF to show the search results for ORFs in the six reading frames.

-
4\ Biological Sequence Viewer - NM_000520

= | B i |

File Edit Sequence

Display Window Help

| a x

a2 e

Line length: -E-ﬂ |

H O H

= [0

Sequence View

MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), tfranscript variant 2, mRMA.

N:M_nuuszu: Homo sapiens| |Position: Words found: 33 2751 bp
[=-Sequence
10 zZ0 a0 40 50 &0
m . IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIIII
_ Full Translation 1 tcacatcaca acgactbgbg gotbtaatcc tocgbtbttc tgotbbctgaa gttacttcag =
;----Annotated CcDs :i-
“-CDS with Translatic 3 E
-1
----- Complement Sequence -
P q - —
----- Reverse Complement 5
----- Features £1 coctggoaagt cotbttaccte ccogtaggoc tggogagotg catcacaaca ttcaagatte
----- Comments :é
-1
-2
121 acecctagage catctgggaa actttocttoct ceoagghbogoo chbgogtooctc gococtoocoac
+1
< [Lm P =
-1
Base Count -z
-2
'y 593 2l.6%
181 ccoogtteotte togagtoggy tgagobgtot aghbtocatca cggocggoac ggocgoaggd
C: 750 27.3% +1
G: 716 26. 0% i
T: 692 25.8% _ 'f
= :5 :
241 grggooggtt atttacCgot ctactgggoc cgtgaacagt ctggogagoc gagoagrtge
+1
4 +
-1
_= .
-2 T
= 301 coacaccodgo cacaatcoogo toOcacotado adoagoctoa gotccadooc ogdaadtoaaa
4 I [4 [
4.7 BP/Pixel | ® x2Zoomin | | &) X2Zoom out
Map View 1 Laoan zaoo Z7EL +
| | |
Sequence
ORF
cos

I

3-18

Exploring a Nucleotide Sequence Using the Sequence Viewer App

4 Click Annotated CDS to show the protein coding part of a nucleotide sequence.

4\ Biclogical Sequence Viewer - NM_000520 o |8 &
File Edit Seguence Display Window Help | & x
- A _ . .
I.Q,,Q|»a|§|@| Line length: |60 ~ ED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
N_M_UUUSEU: Home sapiens| |Position: 2751 bp
E-Sequence
ORF 10 z0 20 40 ED &0
H) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
"""F"'”T'amlat":' 1 tracatcaca acgacttgtyg gttttaatcr tocgtttttec tgottctgaa gttacttcag o
"'“OttEdCD) £l cotggoaagt cobttaccte cocogtaggeoc tggogageotyg catcacaaca ttcaagatte
CDS with Translatio 121 acecctagage catcbgggaa actbtottot cocagghbogoe chgogtbocte goctoocoac
""" Complement Sequence 181 ccocogttotte togagtocggy tgagotgteot agttocatca cggocgdoac gooodoadod]
""" Reverse Complement 5 241 gtggeocgghbt atttactgeot ctactgggec cgbgaacaght chbggogagec gageagttge 3
----- Features 301 cgacgocogg cacaatcoge tOgcAcgrage aggagoctoa ggtocaggoc ggaagtgaaa
----- Comments 36l gggoagggty tgggtoctoo tggggbogoa gocgcagage cgoctotgght cacgtgatte
421 geoeogataaghb cacgggggcyg cogotcacct gaccagggto tcacgtggeoc agoccococtoo
481 gagaggyggay accagoggge catgacaago tocagygottt gULtttogot gotgotggcy
HEXA
541 gragogttog caggacggge gacggoocto tggocotgge ctbocagaacth coaaacctoo
4 [] } e
— £01 gaccageget acgtoccttta coccgaacaac ttboaattoe agtacgatghb cagotogogoe
Base Count HEXA
N 93 2164 - £l gogragooog gotgotocagt cotogacgag goctbocage gotatocgtga cotgotbtte
: LBE T
C: 750 27. 3% . HEXA
. 216 26 D%E 721 ggttooggght cttggococyg tocttaccto acagggaaac ggoatacact ggagaagaat
T 632 Z5.28 HEXA
781 grgrtggttyg tCCLCbLgrLagt cacacctgga tgtaaccage tLoCctacttht ggagrtoagtd
HEXA
841 gagaattata coctgaccat aaatgatgac cagtghbttac tootoctotga gactgtotgg
o HEXA
1 | il | 3 Fl P
4.7 BP/Pixel ’ *) X2 Zoom in I ’ (=}, X2 Zoom out
Map View 1 1000 Z0oo 2751+
]]]
Sequence =
ORF
CDE

4

{11

Searching for Words

You can also search for characteristic words or sequence patterns using regular expressions. You can
enter the IUB/IUPAC nucleotide and amino acid symbols that are automatically converted to
corresponding nucleotides and amino acids accordingly. For details about how symbols are
interpreted, see the Nucleotide Conversion and Amino Acid Conversion tables of seq2regexp.

3-19

3 Sequence Analysis

For instance, if you search for the word ' TAR' with the Regular Expression box checked, the app
highlights all the occurrences of 'TAA' and 'TAG' in the sequence since R = [AG].

1 Select Sequence > Find Word.

2 In the Find Word dialog box, type a sequence word or pattern, for example, atg, and then click
Find.

Find Ward [® |

Enter a Word:
atg

Regular Expression

Find || Concel |

The Sequence Viewer searches and displays the location of the selected word.

3-20

Exploring a Nucleotide Sequence Using the Sequence Viewer App

-
4\ Biological Sequence Viewer - NM_000520

= | B e |

File Edit Sequence Display Window Help | a x
= At) . -
pﬁ{”*a'@"@' Line length: |60 EED]EE@
Sequence View MM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
NM_000520: Homo sapiens| | Position: Waords found: 33 2751 bp
[=-Sequence
10 Z0 30 40 5o &0
ORF) IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|
g----FuIITransIatm 1 toacatcaca acgacttgtg grtttaateos CoCgLtLthe COOLTCotOAAa gLUACThOoAaqg it
: Annctated CD £l cotggoaagt cotttaccte ccogrtaggoc tggogagetg catcacaaca ttcaagatte
- CD5 with Translatio 121 accctagage catctgggaa actbtottet cocagghtcogoe chbgogtocte gooctoocoac
""" Complement Sequence 181 ccogttocttc tegaghbocggy tgagetgbct agtbtcoccatca cggcoccggocac ggccgoaggd
""" Reverse Complement 5 241 grtggecggtt atttactgct ctactgggos cgbgaacadgt cbggogagec gagoagroge
""" Features 301 cgacgocogyg cacaatcoge tgcacgtago aggagoctoa ggtccaggoc ggaagtgaaa 5
----- Comments 36l gggroagyggty tgggtoctoe tgggghbogoa gycgcagage cgochbotgghb cacgtgatte
421 geoegataadt cacggggicg cogotcacct gaccagggte tcacgtggoc agocococtoo
481 gagaggggag accagoggge catgacaago tocaggottt ggttttogeot gotgotggod
HEXA .
541 gragoegtteog caggacggge gacggoocto tggococtgge otcagaactt coaaacctoo
< [Sl
601l gaccagocget acgtocottta cocogaacaac ttboaattoco agtacgatghb cagotoggoo
Base Count HEXA
N . 1 64 - f61 gocgoagoocog gotgotcagt cotogacgag gocttocage gotatcgtga cotgotbtte
: LRE Y
C 750 27.3% - HERA
o 16 26. 0 721 ggttoogggt cLtggococy COCLCLACCLD acagggadac JUoatacact ggagaagaat
T £92 25.2% g
= 781 gtgttggttyg totcotgtagt cacacctgga tgtaaccage ttoctacttt ggagtoagtyg
HEX A
841 gagaattata coctgaccat aaatgatgac cagtgrtttac toctctobga gactgtotgd
HEXA
901 ggagctocteoc gaggtobgga gacttbtage cagoetbgtbtt ggaaatctge tgagggcaca
HEXA
96l tteotttateca acaagactga gattgaggac tttocoogot ttoctcacog gggottgotyg
1 | 1 | 3 4 . ol =
4.7 BP/Pixel | ® X2Zoomin | | &) X2Zoom out
Map View 1 1000 000 2751 -
| | |
Sequence
— b B ke b P —
ORF
=i = =]
] e = e =
o (o | { =
CcDhs
1] | *

Clear the display by clicking the Clear Word Selection button @ on the toolbar.

3-21

3 Sequence Analysis

Exploring Open Reading Frames

The following procedure illustrates how to identify the protein coding part of a nucleotide sequence
and copy it into a new view. Identifying coding sections of a nucleotide sequence is a common
bioinformatics task. After locating the coding part of a sequence, you can copy it to a new view,
translate it to an amino acid sequence, and continue with your analysis.

1 In the left pane, click ORF.
The Sequence Viewer displays the ORFs for the six reading frames in the lower-right pane.
Hover the cursor over a frame to display information about it.
4.7 BP/Pixel | ® x2Zoomin | | & X2Zoomout |
Map View 1 1000 2000 2751
Sequence i : : : !
— >—| i b b =+ ks s lg,-: E
ORF s i «|Frame: 1, StartBP: 502, EndBP: 2089, Length: 1588 |-
—f =t =t <
s B | | =i
cos i
||« n | ¥
2 Click the longest ORF on reading frame 2.
The ORF is highlighted to indicate the part of the sequence that is selected.
i| 47 BR/Piel | @ X2Zoomin | [& X2Zoom out
Map View 1 1000 zZ0on g751 =
| | | |
Sequence || N s
ORF ! — » He N == ! b I—%
= = — = i}
—t — = =
L3 | | =
CDs 3 Il
|| 4 1] | »
3 Right-click the selected ORF and then select Export to Workspace. In the Export to MATLAB

3-22

Workspace dialog box, type a variable name, for example, NM_000520_ORF 2, then click

Export.

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Export to MATLAE Workspace | 29

Enter a Variable Mame:

MM_000520_0ORF_2

Export] ’ Cancel

L A

The NM_000520_ORF_2 variable is added to the MATLAB Workspace.

Select File > Import from Workspace. Type the name of a variable with an exported ORE, for
example, NM_000520_ORF_2, and then click Import.

The Sequence Viewer adds a tab at the bottom for the new sequence while leaving the original
sequence open.

3-23

3 Sequence Analysis

|'\

P
4\ Biological Sequence Viewer - NM_000520_ORF_2 =B %
File Edit Sequence Display Window Help | a x
- At) . .
pﬁQ|*a@|§|ﬂ| Line length: |60 - EED]EE@
Sequence View MM_000520_0ORF_2
NM_000520_ORF_2 Position: 232 bp
s cquencd
. ~ORF 10 z0 20 40 &0
E‘""FU”TFEHS'EtiOH || ||||||||||
E---ComplementSequence l atgatgacca gtgtttactc ctoctctgaga ctgtctggyy agoctctocga ggtctggaga i
i Reverse Complement 5 6l ctbttagcoca goLbbgttbgy sastctgcty agggcacatt ctttatcaac aagactgaga
. _____ Features 121 ttgaggactt tCoCOgOLLL CotCacodgy JOLLYCctgLt ggatacatcot cgocattacce
_____ Comments 181 tgccactctc tagocatcctyg gacactoctgy atgtcatggc gtacaataaa To
4 m 3
Base Count
A: 48 20.7%
C: &0 25.9% |
B: 54 23.3% |°
T: 7a 30.2%
4 m 3 4 (IR
0.4 BP/Pixel | ® x2Zoomin | | © X2Zoomout |
Map View 1 100 z00 zag *
|] |]
Sequence _—
1|] r
© Untitled x| NM_000520 x [NM_000520_ ORF_2 x|

5 In the left pane, click Full Translation. Select Display > Amino Acid Residue Display > One

Letter Code.

The Sequence Viewer displays the amino acid sequence below the nucleotide sequence.

3-24

Exploring a Nucleotide Sequence Using the Sequence Viewer App

|'\

e
4\ Biological Sequence Viewer - NM_000520_ORF_2 == %
File Edit Sequence Display Window Help | a x

= A) . .
pﬁQ|*a@|§|@| Line length: |60 - EED]EE@
Sequence View MM_000520_0ORF_2
NM_000520_ORF_2 Position: 232 bp
-Sequence
: +ORF 10 z0 20 40 50 &0
FuIITransIalia ||
..... Complement Sequence l atgatgacca gtgtttactc ctctoctgaga ctgbctgggy agctctcoga ggtctggaga i
‘Reverse Complement 5 H M T OV OF 3 5 L R L 35 G E L &% E ¥ W R
- Features # ® P v F T P L * D cC L G 5 35 P E &5 G TD
o D Q cC L L L 3 E T ¥ W G A& L R L E
------ Comments
6l cttttagcca gCLLgLLLgy aaatctgotyg agggoacatt chttatcaac aagactgaga
L L & 5 L F G N L L E & H 5 L &5 T E L R
F * F i C L E I C = G H I L ¥ 1 o o * D
T F &5 1 L ¥ u E 5 A E & T F F I N E T E
12l ttgaggactt CCOCCCYCLLL CoLCAcoddy JCLoygctgit ggatacatct Ccgccattacco
L R T F P & F L T G & C C W I H L 4 I T
& L 3 P L 3 0% PG L & ¥ ¥ I 5 P L F
4 m 3 I E I F F R F F H R z L L L I T 3 E H ¥
151 tgcocactcto tagocatcctyd gacactotgy atgtcatggc grtacaataaa To
Base Count
c H 3 L & 5 W T L W M 5 0w E T I N
I 43 20.7% % i T L # H F H 3 ©& cC H & oo o I
C: 60 25.9% | L P L & 5 I L I T L b v M A4 ¥ N K
B: 54 23.3% |°
T: 70 30.2%
4 m 3 l (L
0.4 BP/Pixel | ® x2Zoomin | | © X2Zoomout |
Map View 1 100 z00 zag *
|] |]
Sequence [—
1|] r
Untitled x| WM_000520 = [NM_DDUSZD_ORF_Z ><]

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

3-25

3 Sequence Analysis

Explore a Protein Sequence Using the Sequence Viewer App

3-26

In this section...

“Overview of the Sequence Viewer” on page 3-26
“Viewing Amino Acid Sequence Statistics” on page 3-26
“Closing the Sequence Viewer” on page 3-28
“References” on page 3-29

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics Toolbox
toolbox. Instead of entering commands in the MATLAB Command Window, you can select and enter
options using the app.

Viewing Amino Acid Sequence Statistics

The following procedure illustrates how to view an amino acid sequence for an ORF located in a
nucleotide sequence. You can import your own amino acid sequence, or you can get a protein
sequence from the GenBank database. This example uses the GenBank accession number

NP 000511.1, which is the alpha subunit for a human enzyme associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

2 In the Enter Sequence box, type an accession number for an NCBI database entry, for example,
NP_000511.1. Click the Protein option button, and then click OK.

Downlead Sequence from MNCEI [ﬁJ

Enter Sequence Accession Mumber or Locus Mame

MP_000511.1

Muclectide @ P

...................

L A

The Sequence Viewer accesses the NCBI database on the Web and loads amino acid sequence
information for the accession number you entered.

Explore a Protein Sequence Using the Sequence Viewer App

4\ Biological Sequence Viewer - NP_000511 SRECE X
File Edit Sequence Display Window Help ax
RRNE #|e Line length: |60 ~ HmBe =0
Sequence View NP_000511: hexosaminidase A preproprotein [Homo sapiens]
NP_000511: hexosaminidas ot 520 aa
g
i~Features 10 20 30 40 50 &0
LComments || e | I [| I [| I |
1 mtssrlwfsl llaaafagra talwpwpgnf gtsdgryvly pnnfqfqydv ssaagpgosy e
61 ldeafgryrd llEgsgswpr pyltghrhtl eknvlvwswy tpgonglptl esvenytlti
121 nddgelllse tvwgalrgle tfsglwwksa egoffinkre iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpv thiytagdvk
241 evieyarlrg irvlaefdep ghtlswgpgl pgllepcysg sepsgtfgpy npslnntyef
301 mstfflevss vipdfylhlg gdevdftowk snpeigdfnr kkgfgedflkyg lesfyigtll
361 divssygkgy wvwgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfayerl shfrecellrr gvgagplnvyg foegefegt
« [am v
Amino Acid Count
At 26 4.9y %
R 25 4.9% E|
n: 2z 4.2% —!
P a7 S.1%
C: 8 1.5%
Q: zz 4.2%
E: 38 6. 8% il
fiT o
0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |
Map View 1 100 z00 200 400 500 529 4
L 1 L 1 L L 1
Sequence = |
w|]4] [+
Untitled = | NP_000511 x

Select Display > Amino Acid Color Scheme, and then select Charge, Function,
Hydrophobicity, Structure, or Taylor. For example, select Function.

The display colors change to highlight charge information about the amino acid residues. The
following table shows color legends for the amino acid color schemes.

3-27

3 Sequence Analysis

4\ Biclogical Sequence Viewer - NP_000511

File Edit Sequence Display

Lan® @ e

Sequence View

NP_000511: hexosaminidass

Position

eatures
Comments

61 ldeafgryrd llEgsgswpr

pyltgkrhtl

eknvlvwsvy

tpgcnglptl

== =]
Window Help ax
Line length: |60 HOBZ @
NP_000511: hexosaminidase A preproprotein [Homo sapiens]
529 aa
10 20 30 40 50 &0
‘‘‘‘‘‘‘‘‘ Lo b b b b i |

1 mtssrlwfsl llaaafagra talwpwpgnf gosdgryvly pnnfqfqydv ssaagpgosy h

eavenytlti

121 nddgeclllse tywgalrgle tfsglwwksa egtffinkte iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpw thiytagdvk
24l ewvieyarlry irvlaefdop ghtlswogpol pollepcysg sepsgtfopwv npslontyef
301 mstfflevss wipdfylhlyg gdevdftowk snpeigdfnr kkgfgedfky lesfyigtll
361 divssvokogy wywgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfaverl shfrcellrr gvgagplnwg foegefegt

« [am v

Amino Acid Count

At 26 4.9y %

R 25 4.9% E|

n: 2z 4.2% —!

P a7 S.1%

C: 8 1.5%

Q: zz 4.2%

E: 38 6. 8% il

Ll F—— | o

0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |

Map View 1 100 200
L 1 L

Sequence

4 i

Untitled = [NP_000511 x

Amino Acid Color Scheme Color Legend
Charge * Acidic — Red
* Basic — Light Blue
* Neutral — Black
Function * Acidic — Red
* Basic — Light Blue
* Hydropobic, nonpolar — Black
* Polar, uncharged — Green
Hydrophobicity * Hydrophilic — Light Blue
* Hydrophobic — Black
Structure * Ambivalent — Dark Green
* External — Light Blue
e Internal — Orange
Taylor Each amino acid is assigned its own color, based on the
colors proposed by W.R. Taylor on page 3-29.

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

3-28

Explore a Protein Sequence Using the Sequence Viewer App

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography. Protein Engineering 10,
7, 743-746.

3-29

3 Sequence Analysis

Compare Sequences Using Sequence Alignment Algorithms

3-30

In this section...

“Overview of Example” on page 3-30

“Find a Model Organism to Study” on page 3-30

“Retrieve Sequence Information from a Public Database” on page 3-31
“Search a Public Database for Related Genes” on page 3-33

“Locate Protein Coding Sequences” on page 3-34

“Compare Amino Acid Sequences” on page 3-36

Overview of Example

Determining the similarity between two sequences is a common task in computational biology.
Starting with a nucleotide sequence for a human gene, this example uses alignment algorithms to
locate and verify a corresponding gene in a model organism.

Find a Model Organism to Study

In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs is an autosomal
recessive disease caused by the absence of the enzyme beta-hexosaminidase A (Hex A). This enzyme
is responsible for the breakdown of gangliosides (GM2) in brain and nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated with this disease, then
find the nucleotide sequence for the human gene that codes for the enzyme, and finally find a
corresponding gene in another organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command window, type

web('http://www.ncbi.nlm.nih.gov/books/NBK22250/")

The MATLAB Help browser opens with the Tay-Sachs disease page in the Genes and Diseases
section of the NCBI web site. This section provides a comprehensive introduction to medical
genetics. In particular, this page contains an introduction and pictorial representation of the
enzyme Hex A and its role in the metabolism of the lipid GM2 ganglioside.

Compare Sequences Using Sequence Alignment Algorithms

oy O 5 | @4 | Location: | http://www.ncbinlm.nih.gov/books/NBK22250

S NCBIl Resources @ How To @ Sign in to NCBI
Bookshelf
This Book ~ |

Limits Advanced Help

Caontents Print View < Prev Next = T ::' Genes and Disease [Internat].
Ll Mational Center for
Bookshelf ID: NBK22250 [aenes and pisense | -)
Tii:i111:: DBiotechnology Information
i Us).
Tay-Sachs disease Show detaile
A Table of Contents Page | Cite this Page
& Download =

= PDF wversion of this page (261K)

ﬁmzamiv;tx
éa Gene sequence 2
Genome view see gene locations
N\ V Entrez Gene collection of gene-related information
KEY
BLink related sequences in different organisms
Gw %\ }HEXA
Model for Gz gangloside metabolism.
Under normal conditions, f-hexosaminidase
works in the lysosome of nerve cells to

breakdown unwanted ganglioside Gz, a
component of the nerve cell membrane, This

The literature
Research articles online full text

Books online books section

Tequlres three components: an c-subunit, a -
fsubunit and an actvator subunit. In Tay oMin catalog of human genes and disorders
a0k dlssaserane alofa subunitof GeneReviews a medical genetics resource

hexesaminidase malfuncliens, leading to a
toxic build-up of the Gyz ganglioside in the
lysosyme. [Adapted from: Chavany, C. and
Jendoubi, M. (1998) Mol Med. Today, 4: 158-

165, with permission.] Websites =
Tay-Sachs disease, a heritable metabolic disorder commaonly associated with Ashkenazi Jews, has also been F_SCT Sheet from National Institute of Neurological

found in the French Canadians of Southeastern Quebec, the Cajuns of Southwest Louisiana, and other Disorders and Stroke

populations throughout the world. The severity of expression and the age at onset of Tay-5achs varies from NTSAD National Tay-Sachs and Allied Diseases
infantile and juvenile forms that exhibit paralysis, dementia, blindness and early death to a chronic adult farm Association

that exhibits neuron dysfunction and psychosis.

2 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme hexosaminidase A (Hex A),
while the gene HEXB codes for the beta subunit of the enzyme. A third gene, GM2A, codes for
the activator protein GM2. However, it is a mutation in the gene HEXA that causes Tay-Sachs.

Retrieve Sequence Information from a Public Database

The following procedure illustrates how to find the nucleotide sequence for a human gene in a public
database and read the sequence information into the MATLAB environment. Many public databases
for nucleotide sequences (for example, GenBank, EMBL-EBI) are accessible from the Web. The
MATLAB Command Window with the MATLAB Help browser provide an integrated environment for
searching the Web and bringing sequence information into the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the MATLAB Workspace.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command Widow, type

web('http://www.ncbi.nlm.nih.gov/")

3-31

3 Sequence Analysis

The MATLAB Help browser window opens with the NCBI home page.

2 Search for the gene you are interested in studying. For example, from the Search list, select
Nucleotide, and in the for box enter Tay-Sachs.

- =
£ NCBI

Resources) HowTo

Nucleotide Nucleotide ~ |Tay-Sachs |

Save search Limits Advanced

The search returns entries for the genes that code the alpha and beta subunits of the enzyme
hexosaminidase A (Hex A), and the gene that codes the activator enzyme. The NCBI reference for
the human gene HEXA has accession number NM_000520.

Nucleotide Mucleotide

= |Tay—Sachs |
Save search Limits Advanced
Display Settings: [~] Summary, 20 per page, Sorted by Default order Send to:

© Found 23006 nucleotide sequences. Mucleotide (60) GSS (27346)

Results: 1 to 20 of 60 Page 1 of3 MNext> Last=»

[F] HEXA {HEXA4bpDeltass mutation, exon 11} [numan, Tay-Sachs disease patient. mRNA Partial Mutant, 84 nf]
1 84 bp linear mRNA

Accession: S765984.1 Gl 912781
GenBank FASTA Graphics

7] HEXA {HEXAdeltass mutation, exon 11} [numan, Tay-Sachs disease patient, mRNA Partial Mutant, 80 nt]
5 80 bp linear MRNA

Accession: STE9821 GL 912780
GenBank FASTA Graphics

[F] HEXA {HEXA4bp mutation, exon 11} [human, Tay-Sachs disease patient, MRNA Partial Mutant, 84 nf]
3. 84 bp linear mRNA

Accession: S77043.1 GI 912779
GenBank FASTA Graphics

7] HEXA {HEXA4bpDeltaA mutation, exon 11} [human, Tay-Sachs disease patient, mRNA Partial Mutant, 78 nt]
4 78 bp linear mRNA

Accession: STEE801 GL M2777
GenBank FASTA Graphics

[F] Human beta-hexosaminidase A alpha-chain (with the classic form Tay-Sachs delefion) gene, partial cds
5 351 bp linear DNA

Accession: J02820.1 GI: 184482
GenBank FASTA Graphics Related Sequences

[Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRENA
£ 2,437 bp linear mRNA

Accession: NM_0D00520 .4 Gl: 189181665
GenBank FASTA Graphics Related Sequences

3 Get sequence data into the MATLAB environment. For example, to get sequence information for
the human gene HEXA, type

3-32

Compare Sequences Using Sequence Alignment Algorithms

humanHEXA = getgenbank('NM 000520")

Note Blank spaces in GenBank accession numbers use the underline character. Entering 'NM
00520 ' returns the wrong entry.

The human gene is loaded into the MATLAB Workspace as a structure.
humanHEXA =

LocusName: 'NM_000520'
LocusSequenceLength: '2255'
LocusNumberofStrands: "'
LocusTopology: 'linear'’
LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'PRI'
LocusModificationDate: '13-AUG-2006'
Definition: 'Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.'
Accession: 'NM_000520'
Version: 'NM_000520.2'
GI: '13128865'
Project: [1]
Keywords: []
Segment: []
Source: 'Homo sapiens (human)'
SourceOrganism: [4x65 char]
Reference: {1x58 cell}
Comment: [15x67 char]
Features: [74x74 char]
CDS: [1x1 struct]
Sequence: [1x2255 char]
SearchURL: [1x108 char]
RetrieveURL: [1x97 char]

Search a Public Database for Related Genes

The following procedure illustrates how to find the nucleotide sequence for a mouse gene related to a
human gene, and read the sequence information into the MATLAB environment. The sequence and
function of many genes is conserved during the evolution of species through homologous genes.
Homologous genes are genes that have a common ancestor and similar sequences. One goal of
searching a public database is to find similar genes. If you are able to locate a sequence in a database
that is similar to your unknown gene or protein, it is likely that the function and characteristics of the
known and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST search or search in the
genome of another organism for the corresponding gene. This procedure uses the mouse genome as
an example.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command window, type

web('http://www.ncbi.nlm.nih.gov")

2 Search the nucleotide database for the gene or protein you are interested in studying. For
example, from the Search list, select Nucleotide, and in the for box enter hexosaminidase
A

The search returns entries for the mouse and human genomes. The NCBI reference for the
mouse gene HEXA has accession number AKO80777.

3-33

3 Sequence Analysis

[Mus musculus 9.5 days embryo parthenogenote cDNA, RIKEN full-length enriched library, clone:B130019M09
117, producthexosaminidase A, full insert sequence

1,839 bp linear mRMNA

Accession: [NOENIEE] 1 Gl 26348756

GenBank FASTA Graphics

Felated Sequences

3 Get sequence information for the mouse gene into the MATLAB environment. Type

mouseHEXA = getgenbank('AK080777")

The mouse gene sequence is loaded into the MATLAB Workspace as a structure.

mouseHEXA =
LocusName: 'AKO80777'
LocusSequencelLength: '1839'
LocusNumberofStrands: ''
LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'HTC'
LocusModificationDate: '02-SEP-2005"'
Definition: [1x150 char]
Accession: 'AK080777'
Version: 'AK080777.1'
GI: '26348756'
Project: []
Keywords: 'HTC; CAP trapper.'
Segment: []
Source: 'Mus musculus (house mouse)'
SourceOrganism: [4x65 char]
Reference: {1x8 cell}
Comment: [8x66 char]
Features: [33x74 char]
CDS: [1x1 struct]
Sequence: [1x1839 char]
SearchURL: [1x107 char]
RetrieveURL: [1x97 char]

Locate Protein Coding Sequences

The following procedure illustrates how to convert a sequence from nucleotides to amino acids and
identify the open reading frames. A nucleotide sequence includes regulatory sequences before and
after the protein coding section. By analyzing this sequence, you can determine the nucleotides that
code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can determine the protein coding
sequences. This procedure uses the human gene HEXA and mouse gene HEXA as an example.

1 Ifyou did not retrieve gene data from the Web, you can load example data from a MAT-file
included with the Bioinformatics Toolbox software. In the MATLAB Command window, type

load hexosaminidase

The structures humanHEXA and mouseHEXA load into the MATLAB Workspace.

3-34

Compare Sequences Using Sequence Alignment Algorithms

Locate open reading frames (ORFs) in the human gene. For example, for the human gene HEXA,
type

humanORFs = seqshoworfs(humanHEXA.Sequence)

seqgshoworfs creates the output structure humanORFs. This structure contains the position of
the start and stop codons for all open reading frames (ORFs) on each reading frame.

humanORFs =

1x3 struct array with fields:
Start
Stop

The Help browser opens displaying the three reading frames with the ORFs colored blue, red,
and green. Notice that the longest ORF is in the first reading frame.

Frame 1

000001 agttgcocgacgocoggocacaatcogotgecacgtagocaggagectcaggbccaggeococggaagtga
000065 aagggcagggtgtgggtecctoctggggtocgocaggegecagagecgoctoctggtcacgtgattege
000129 cgataagtcacgggggocgoocgctcacctgaccagggbctcacgbggoccageccococctcogagagy
000133 ggagaccagcgggccatgacaagetecaggetttggttttegetgetgetggeggeoagegtteg
000257 caggacgggegacggeccetetggecetggectecagaacttocaaacetocegaccagegetacgt
000321 cectttaccogaacaactttecaattecagtacgatgtecageteggeegegeageceggetgetea
000385 gtectegacgaggecttecagegetategtgacetgetttteggttecgggtettggeccegte
000449 cttacectcacagggaaacggecatacactggagaagaatgtgttggttgtetetgtagteacace
000513 tggatgtaaccagecttectactttggagtcagtggagaattatacecectgaccataaatgatgac
000577 cagtgtttactecetetetgagactgtetggggageteteegaggtetggagacttttagecage
000641 ttgtttggaaatetgeoctgagggeacattetttatecaacaagactgagattgaggacttteoeeceg
000705 ctttocetcaceggggettgetgttggatacatetegecattacetgecactetetageatectg
000769 gacactetggatgtcatggecgtacaataaattgaacgtgttecactggeatetggtagatgate
000833 cttectteoccatatgagagettecactttteocagagetecatgagaaaggggtectacaaccetgt
000897 cacccacatectacacageacaggatgtgaaggaggtcattgaatacgeacggeteocggggtate
000961 cgtgtgettgeagagtttgacactectggecacactttgtectggggaccaggtatecctggat
001025 tactgactecttgetactetgggtetgagecetetggeoacetttggaccagtgaateccagtet
001089 caataatacctatgagttcatgagecacattettettagaagtecagetetgtetteoccagatttt
001153 tatectteatettggaggagatgaggttgattteacetgetggaagtecaacccagagatecagg
001217 actttatgaggaagaaaggcttecggtgaggacttecaageagetggagtecettetacatecagac
001281 getgotggacategteotettettatggeaagggetatgtggtgtggeaggaggtgtttgataat
001345 aaagtaaagattecagoccagacacaatcatacaggtgtggegagaggatatteccagtgaactata
001409 tgaaggagctggaactggtcaccaaggeceggetteegggecettetetetgecoccctggtacet
001473 gaaccgtatatcetatggecetgactggaaggatttetacatagtggaacccectggeatttgaa
001537 ggtacecectgagecagaaggetetggtgattggtggagaggettgtatgtggggagaatatgtgg
001601 acaacacaaacctggteecccaggetetggeccagagecaggggetgttgecgaaaggetgtggag
001665 caacaagttgacatctgacctgacatttgectatgaacgtttgtecacacttecegetgtgaattg
001729 ctgaggegaggtgtoccaggeccaaccoctecaatgtaggettetgtgageaggagtttgaacaga
0017393 cetgagocococcaggocaccgaggaggogtgotggoctgtaggtgaatggtagtggagecaggetteca
001857 ctgeatectggeocaggggacggageccettgeettegtgececttgectgegtgeceetgtget
0015921 tggagagaaaggggccggtgetggegetegeattecaataaagagtaatgtggeatttttetata
001985 ataaacatggattacctgtgtttaaaaaaaaaagtgtgaatggegttagggtaagggecacagee
002049 aggctggagtcagtgtetgececctgaggtettttaagttgagggetgggaatgaaacetatage
002113 ctttgtgetgttetgeoettgectgtgagetatgtcactoccectoccactoctgaccatatteca
002177 gacacctgococctaatccoctcagoctgotcacttcactictgeoattatatctccaaggegthtggta
002241 tatggaaaaagatgtaggggecttggaggtgttetggacagtggggagggetecagaceccaacet
002305 ggtcacagaagagcctetecoceccatgeoatacteatecacetecetecocctagagetattetect
002369 ttgggtttecttgetgeottcaattttatacaaccattatttaaatattattaaacacatattgtt
002433 cteta

3-35

3 Sequence Analysis

3 Locate open reading frames (ORFs) in the mouse gene. Type:
mouseORFs = seqshoworfs(mouseHEXA.Sequence)

segshoworfs creates the structure mouseORFS.

mouseORFs =

1x3 struct array with fields:
Start
Stop

The mouse gene shows the longest ORF on the first reading frame.

Frame 1

000001 geoetgotggaaggggagetggecggtgygecatgygococggoctygcagygctetgggtttogotgotyge
000055 tggogygogygogttggottgottgygocacggocactygtygyoocgtygococagtacatoccaaaocta
000129 ccaccggogcoctacaccctgtacccoccaacaactteoccagttocggtaccatgtcagttocggococygeg
000193 caggocgggctgogtogtoctogacgagyoctttogacyotacogtaacctgotottoggttooy
000257 goctecttggoccoccgacccagocttctocaaataaacagraaacygttgygggaagaacattctggtggt
000321 ctocgtogtoacagotgaatygtaatgaatttoctaatttggagtoggtagaaaattacacocta
000355 accattaatgatgaccagtgtttactocgeoctotgagactgtctyggggogotctocgaggtotgg
000449 agactttocagtcageottgtttggaaatcagotgagygocacgttotttatcaacaagacaaagat
000513 taaagacttteoctogattoccoctcaccggggocgtactgctggatacatctogecattacctgeca
000577 ttgtctagocatoctggatacactggatgtocatggoatacaataaattocaacgtgttoccactygge
000641 acttggtggacgactcttocttcccatatgagagocttcactttoccagagetcaccagaaaggg
000705 gtocttocaaccctygtcactocacatotacacagocacaggatgtgaaggagygtcattgaatacgeoa
0007589 aggcttoggggtatcocgtgtgotggecagaatttgacactoctggeocacactttgtoctggggygc
000833 caggtgoccotggygttattaacacottgotactotygggtotcatotototyggocacatttggace
000597 ggtgaaccccagtcoctcaacagecacctatgacttcatgageacactcttcctggagatcagetcea
000951 gtottocooggacttttatoctocacoctgygagyyggatgaagtogacttocacctygotggaagtoca
001025 accccaacatccaggccttcatgaagaaaaagggctttactgacttcaagoagoctggagtoott
0010589 ctacatcoccagacgotgotggacatogtototgattatgacaagggotatgtgygtgtygocaggay
001153 gtatttgataataaagtgaaggttoggcoccagatacaatcatacaggtgtgygcgggaagaaatygce
001217 cagtagagtacatgttyggagatgcaagatatcaccaggygotgygottoocgyggoocctgotgtotyge
0012581 tcoctggtacctgaaccgtgtaaagtatggcocctgactggaaggacatgtacaaagtggagocc
001345 ctggogtttoatggtacgoctgaacagaagygotoctggtoattyggaggyggagygocotgtatgtggy
001409 gagagtatgtggacagcaccaacctyggtocccagactoctggooccagagogggtgoccgtogotga
001473 gagactgtggagcagtaacctgacaactaatatagactttgoctttaaacgtttgtogeoatttc
001537 cgttgtgagotggtgaggagaggaatccaggoccageoccatcagtgtaggetgotgtgagoagy
001601 agtttgagoagacttgagooaccagtgotyaacacocagyagdtigotgtoctttgagtcayet
001665 gogotgagoaceocagyagyytgotgyocttaagagageagyteccggyyeagygectaatecttoo
001729 actgoctoocodyocaddyyadadoaccocttyecediytyoooctgtgactacagagasgyadg
001793 ctggtgotggoactggtgttcaataaagatctatgtggocattttcote

Compare Amino Acid Sequences

The following procedure illustrates how to use global and local alignment functions to compare two
amino acid sequences. You could use alignment functions to look for similarities between two
nucleotide sequences, but alignment functions return more biologically meaningful results when you
are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences, you can convert the
protein coding sections of the nucleotide sequences to their corresponding amino acid sequences,
and then you can compare them for similarities.

1 Using the open reading frames identified previously, convert the human and mouse DNA
sequences to the amino acid sequences. Because both the human and mouse HEXA genes were in
the first reading frames (default), you do not need to indicate which frame. Type

3-36

Compare Sequences Using Sequence Alignment Algorithms

humanProtein
mouseProtein

nt2aa(humanHEXA.Sequence);
nt2aa(mouseHEXA.Sequence);

Draw a dot plot comparing the human and mouse amino acid sequences. Type

seqdotplot(mouseProtein, humanProtein,4,3)
ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between sequences. The diagonal line
shown below indicates that there may be a good alignment between the two sequences.

Human hexosaminidase A (alpha subunit)
100 200 300 400 500 600 700 800
T T T T T T T B T

100 —

300 - C ~, —

400 |- ™,

Mouse hexosaminidase A (alpha subunit)

600~ -

Globally align the two amino acid sequences, using the Needleman-Wunsch algorithm. Type
[GlobalScore, GlobalAlignment] = nwalign(humanProtein, ...

mouseProtein);
showalignment (GlobalAlignment)

showalignment displays the global alignment of the two sequences in the Help browser. Notice
that the calculated identity between the two sequences is 60%.

3-37

3 Sequence Analysis

Identities = 491/812 (60%), Positiwves = 5T5/812 (T1%)
001 SCRRPAOSAARBRSLESRPEVEGOGVGPPGVLGAEPPLVI*FADESRGRESPDOGLTWELAEPSER

065 GDORAMTESELWFSLLLAAAFAGRATALWPWPCONFCOT SDORYVLYPNNFQFOYDVESARQPGCS

010 -—-——-AMAGCRLWVSLLLARALACLATALWPWEFOYIQTYHRREYTLYPNNFEQFRY

HVSSAROAGCV
129 VLDEAFCRYRDLLEGSGSWPRPYLTGEEHTLERNVLVVSVVIPGCHOLPTLESVENYTLTINDD
o070 '-.-']'_:EAF_;_F.'_'F_;-T]'_T_F GEGEWPR PSII';-IK’.:::I'LGQI LV -"-.-'I'}A_ECI‘Iéll'PZ.-ILES'-.-'EI‘I':'I'LI':I‘I::
193 CLLLSETVWGALRGLETFSQLVWESAEGTFFINKTEIEDFPRFPHRGLLLDT SREYLPLSSIL
134 CLLASETVWGALEGLETFSQLVWESLAEG
257 DTILDVMAYNELNVFHWHLYVDDPSFPYESFTFPELMEEGSYNPVIHIYTAQDVEEVIEYARLRGT
198 DILDVMAYNEFNVEHWHLVDDSSFPYESFIFPE LT.:.Z{SSI:.'HP'-:TZ-_ YTAQDVEEWV

321 ERVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEFMSTFFLEVSSVFPDF

[yl

262 ERVLAEFDITPGHILSWGPGAPGLLIPCYSGSHLSGIFGPVNPSLNSTYDFMSTLFLEISSVEFPDF

385 YLHLGGDEVDFICWESHPEIQDFMEEEGFGEDFEQLESFYILQTLLDIVISYGEGYVVWOEVEDN

FTCWEENPNIQAFMEREGF-TDFEQLESFYIQTLLDIY

iZe YDEGYVVWOEVEDN
449 EVEIQPDTIIIQVWREDIPVNYMEELELVIKAGFRALLSAPWYLNRISYGPDWEDFYIVEPLAFE
389 YMLEMODITRAGFRALLSAPWY LII-‘:- YGPDWEDMYEVEPLAFH
513 HNTHNLVPRLWPRAGAVAERLWSHNELTSDLTFAY

453 GIPEQEALVIGGEACMWGEYVDSTINLVPRLWPRAGAVAERLWSSNLITHIDFAFER

577 LRRGVOAQPLNVGFCEQEFEQT*APGTEEGAGCR*MVVEPGFHCILARGRSPLPSCPLPACPCA
517 VRRGIQAQPISVGCCEQEFEQT*A--T—-SA—-E-——-HPG--————— G—————- C———-CB--

641 WRERGRCWRSHSILESNVAFFYNEHGLEVEFEEESVNGVRVEACPGWSOCLPLRSFELRAGHE

552

705

578

Ta9

606

The alignment is very good between amino acid position 69 and 599, after which the two
sequences appear to be unrelated. Notice that there is a stop (*) in the sequence at this point. If
you shorten the sequences to include only the amino acids that are in the protein you might get a
better alignment. Include the amino acid positions from the first methionine (M) to the first stop
(*) that occurs after the first methionine.

4 Trim the sequence from the first start amino acid (usually M) to the first stop (*) and then try
alignment again. Find the indices for the stops in the sequences.

3-38

Compare Sequences Using Sequence Alignment Algorithms

humanStops

find(humanProtein == '*')

humanStops

41 599 6l1l1 713 722 730

mouseStops

find(mouseProtein == '*')

mouseStops

539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at position 70, and the first
stop after that position is actually the second stop in the sequence (position 599). Looking at the
amino acid sequence for mouseProtein, the first M is at position 11, and the first stop after that
position is the first stop in the sequence (position 557).

Truncate the sequences to include only amino acids in the protein and the stop.
humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF

MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV
FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY
MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYIVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL
SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

mouseProteinORF

mouseProtein(1l:mouseStops(1l))

mouseProteinORF

MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM
LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQPISVGCCEQEFEQT*

Globally align the trimmed amino acid sequences. Type
[GlobalScore trim, GlobalAlignment trim] = nwalign(humanProteinORF,...

mouseProteinORF) ;
showalignment (GlobalAlignment trim)

3-39

3 Sequence Analysis

showalignment displays the results for the second global alignment. Notice that the percent
identity for the untrimmed sequences is 60% and 84% for trimmed sequences.

Identities = 446/530 (84%), Positiwves = 502/530 (95%)
001 MISSRLWFSLLLAARAFAGRATALWPWEONEQTSDORYVLYPNNFQFOYDVSSAMRQPECSVLDER

001 MAGCRLWVSLLLAAALACTATALWPWECYIOTYHRRYTLYFNNFOQFRYHVISALAOAGCVVLDESL

065 FORYRDLLFGSGSWPREFYLTGERHTLEFNVLVVISVVIPGCHOQLPTLESVENYTILTINDDQCLLL
0685 HNLLFGESGSWPRPSFENEOOT LGEN ILVV SVVIAECNEFPNLESVENYT LT INDDOQCLLA

125 SETIVWGALRGLEIFSQOLVWESAEGIFFINKIEIEDFPEFPHRGLLLDTSEHYLPLSSILDILDV

VLLDTSRHYLPLSSILDTLDV
183 MAYNELNVEFEWHLVDDESFPYESFIFPELMEEGSYNPVIHIYTAQDVEEVIEYARLRGIEVLAE
193 MAYNEFNVFEWHLVDDSSFPYESFIFPE LTRKSSENP?T}_ YTAQDVEEVIEYARLRGIRVLAE
257 FDIPGHILSWGPGIPGLLIPCYSGSEPSGIFGPVHPSLNNIYEFMSTFFLEVSSVFPDEFYLHLG

257 FDITPGHILSWGPGAPGLLIPCYSGSHLSGTFGEVHNESLNSTYDFMSTLFLEISSVFPDFYLHLG

321 GDEVDFICWESHPEIQDFMREEGFGEDFEQLESFYIQTLLDIVSSYGEGYVVWNQEVEDNEVEID
321 GDEVDFICWESHENIQAFMEEEGF-TDFEQLESFYIQTLLDIVSDYDEGYVVHQEVEDNEVEVE
385 PDIIIOVWREDIPVHNYMRELELVIEAGFRALLSAPWYLNRISYGPDWEDFYIVEPLAFEGIPEQ

384 PDIIICOVWREEMEFVEYMLEMODITEAGFEALLSAPWYLNEVEYGPFDWEDMYEVEFLAFHGTIFEQD

449 EFALVIGGEACHMWGEYVDNINLVFRLWPRAGAVAERLWSHNELT SDLTFAYERLSHFRCELLERGY
448 EALVIGGEACMWGEYVDSTNLVEPRLWPRAGAVAERLWSSNLTINIDFAFKRLSHFRCELVRRGT

513 QAQPLNVGFCEQEFEQTI*
512 QAQPISVGCCEQEFEQT*

7 Another way to truncate an amino acid sequence to only those amino acids in the protein is to
first truncate the nucleotide sequence with indices from the seqshoworfs function. Remember
that the ORF for the human HEXA gene and the ORF for the mouse HEXA were both on the first
reading frame.

humanORFs = seqshoworfs(humanHEXA.Sequence)

humanORFs

1x3 struct array with fields:
Start
Stop

3-40

Compare Sequences Using Sequence Alignment Algorithms

mouseORFs seqshoworfs (mouseHEXA.Sequence)

mouseORFs

1x3 struct array with fields:

Start
Stop
humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(1).Start(1l):...
humanORFs(1).Stop(1)));
mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1l).Start(1):...

mouseORFs(1).Stop(1)));
[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);
Show the alignment in the Help browser.
showalignment (GlobalAlignment2)

The result from first truncating a nucleotide sequence before converting it to an amino acid
sequence is the same as the result from truncating the amino acid sequence after conversion.
See the result in step 6.

An alternative method to working with subsequences is to use a local alignment function with the
nontruncated sequences.

Locally align the two amino acid sequences using a Smith-Waterman algorithm. Type

[LocalScore, LocalAlignment] = swalign(humanProtein,...
mouseProtein)

LocalScore =
1057

LocalAlignment =
RGDQR - AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV .

S N RN A N R R AN
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT .

Show the alignment in color.

showalignment(LocalAlignment)

3-41

3 Sequence Analysis

3-42

Identities = 454/547 (83%), Positiwves = 514/547 (94%)

1

&4

65

128

129

192

193

256

257

3a0

3zl

354

354

445

443

512

51z

RGDOR-ANTI3RLWFSLLLAALF AGRATALWEP R ONF QTS DORYT VL YPNINFQF QYD WSS LAQP =

e e N R I R R R R R
RGAGRWAMAGCRLUVILLLAALL ACLATALWPWF QY IOTYHRRY TLYPHNFOF RYHVS S AAOALG

CAVLDEAFORYRDLLFGEGSWPRFYL TGERHTLEFIV LV BV TPGCHOLP TLERVEN Y TLTII

R R R R RN e R R R A R R RN
CVWLDEAFRRYRNLLFGEGEWPRPSF SNEQOTLGEN ILVV SV TAECHEF PHLESVEN Y TLTIN

DDOCLLLEETWIGALRGLETF3QLVTESAEGTFF INKETEIEDFPRFPHRGLLLD TSRHYLPLES

RN R R R R R R A R R RN RN RN R R RR RN
DD OCLLASETVIGALRGLETFSOLVIESAEGTFF INKETEIKDFPRFPHRGVLLD TSRHYLPLSS

ILDTLDWMAYNELNVFHUWHLYDDPSFPYESF TFPELMREGE TPV THI Y TAQDVEEVIEYARLE

Frrrerrrerrr=errerreerr crreerre e et rrrrs e e e e e e e
ILDTLDVHATHEFNVFHVHLVD DS SFPYESF TFPELTREGSFNPVTHI Y TAQDVEEVIETARLE

GIRVLAEFDTPGHTLSWGPGIPGLLTRPCYIGIEPSGTF GPVIIPSLNNTYEFISTFFLEVISVEFR

RN R N e R R R RN A R RN R RN
GIRVLAEFDTPGHTLIWGPGAPGLLTRC Y353 HLSGTF GPVNPSLNSTYDFHSTLFLEISSVER

DFYLHLGGDEVDF TCWESHNPE IQDFHREREGF GEDFEQLERFYIOTLLD IV ¥ GEG TV ITQEVE

Frrrerrrerrrerrrerrr=er er=rerr rrrrrrr e e e e et et ety
DFYLHLGGDEVDF TCWESNPH IQAFNEEKGF - TDFEQLESFYIQTLLD IVSD YDEGTVVIQEVF

DNEVEICQPDTIIOVWRED TPV YHKELELVTEAGFRALLIAPNYLNREISTGPDWEDF YWVEFPL L

PEEEEs b rrrrrrrrssrrstr fbee st bbb e e e e st 1t
DNEVEVEFDTIIQVWREEMFVEYHLEMOD ITRAGFRALLS AP WY LNREVEYGFDWED MYEVEFLA

FEGTPEQEALVIGGEACHNGETVINTHLYPRLUPRAGAVAERLWEHNELTZDLTFAYERLSHFRC

Farrrrrrerrrer e e e ettt e e e e e et e tbess Pt
FHGTPEQEALY IGGELCHWGE YWD S THLVPELWPRAGAVAERLUSSNLTTN IDF AF KRLEHF RO

ELLRRGVQLQPLNVGFCEQEFEQT* APGTEEGLGC
Fretrr=tirbs=tr TEEErrrrrr sxps =
ELVERGIQALQF ISVGCCEQEFEQT*ATS AEHPGGC

View and Align Multiple Sequences

View and Align Multiple Sequences

In this section...

“Overview of the Sequence Alignment App” on page 3-43
“Visualize Multiple Sequence Alignment” on page 3-43
“Adjust Sequence Alignments Manually” on page 3-44
“Rearrange Rows” on page 3-52

“Generate Phylogenetic Tree from Aligned Sequences” on page 3-54

Overview of the Sequence Alignment App

The Sequence Alignment app integrates many sequence and multiple alignment functions in the
toolbox. Instead of entering commands in the MATLAB Command Window, you can use this app to
visually inspect a multiple alignment and make manual adjustments.

Visualize Multiple Sequence Alignment

1 Read a multiple sequence alignment file of the gag polyprotein for several HIV strains.

gagaa = multialignread('aagag.aln')
2 View the aligned sequences in the Sequence Alignment app.

seqalignviewer(gagaa);

3-43

3 Sequence Analysis

4| Biological 5equence Alignment - 1

File Edit

Display Help

AAR|@ 8.

GAR-MS5VLSGKKLDEWEKIRLRARPGGKRKK YMLEHIVWAAKELDRFGLNES LLESKEGCO®KILSVLOQPLVFTGSENLESLFNTVOVIWCIHAEE

Consansus
5 i 15 20 25 k] 35] 45 5 55 & &5 T 75 B &S

M2 IV waaN FGLAESLLESBEGCQ LTYLBPMVYPTGS ENL LFNTVCWVIWCI
HV2MCN13 IVWAANELDRIFGLAESLLESRIEGCO LTYLGPLVPTGESENL LFNTVEVIWCI
SIMM2S] vV WAANELDRBIFGLAESLLENKEGCO LSVLAPFLVPTGSENL LYNTVCVIWCI
SIvMMEIE Vv WAANELDRIFGLAESLLENRKEGCCO LEVLAPFPLVPTGS ENL LYNTVCWVIWCI
HW-2UCT IIWAVNELDRBFGLAESLLESMEGC LTYLAPLVPTGSEMNL LFNTVCWVIVCL
SlenEa IIwaanRIELDRIFGS AESLLESKBEGCQ LAVLAFLMPTGS ENL LFSTVCWYVYWCL

SIVAGMETTA LIwAGKRIEMERIFGLEIERL LETREGCCO IEVLTPLEPTESES L LFNLCCWIWCT
SIVAGMI LIWAG FGLMIER|LLESEEGC IEVLYFLEFTGSEGL LFNLVCWLFCV
SIvmnd54e0 VI W WS FGLMER|ILLESQEGCE LEVLFPFLVPFTGSENLISLYNTCCCIWEWY

-1 IV WAS Y ALMPELLETSEGCHMIOI IGALOGPAIGTETEEL L¥YNTVATLYCWV
H HDE LIWAS FTLHNPGLLETSEGCHBIOIIGQALOPSIQTGSEET LYNTVATLYCV

SiVee LV WAS FACNMPGLMETAEGCEQL L LErPaLBITGESEG L LFNTLAVLWCWV
ClepalS LV WAS FACMNPGLMETADGCLOLL LEPALBITGES EG L LFNTLAWVLWCV

SV TAN
Slviman

Sl\ihoest

FAMMPGLMENVEGCW
FGLEDSLLETQBGC

FGLGSQLLETAEGEC

ILQLOQFSVODIGSFEIISLFNTICWLYCY

LEVILPLGQPTGSEST
LEVCWFLYATGS L

LFGIASWLYCT

LVGTVECWICCC

&5 k] 55 1]

]] 75

a1 a5

MRl

TR

U e R S

3-44

Adjust Sequence Alignments Manually

Algorithms for aligning multiple sequences do not always produce an optimal result. By visually
inspecting the alignment, you can identify areas whose alignment can be improved by a manual
adjustment.

1 To better visualize the sequence alignments, you can zoom in by selecting Display > Zoom in.

Select this option multiple times until you achieve the zoom level you want.
2 Identify an area where you could improve the alignment.

View and Align Multiple Sequences

Z Biological

Sequence Alignment - 1

File Edit Display Help
A A A|@ =
Consensus [LE T AER T T WpaTeRTTAR W
15 120 125 130 135 140 145 150 155 160 165 o 175 180 185
HIv-2 GGNYPVQI.VGGNYT IPLSP TLHKNA
HIW2-MCN13 GGNFPVOOQ.VGGNYT YPLSP TLHKA
SMM251 GGNYPVOQOQ.IGGNYVW LEFLSFP TLKA
SNMMZ38 GGHNYPVOQOQ. IGGNYVW LELSFP TLKA
HIW-2UCA GGNYPVQQ. IAGNYVW MPLSEP TLKNA
ShsmSLE2b s GGHNYPYOQQ. VGNNYY TPLSP TLHKNA
SNAGMETTA GISINYPVVN.QNNAUV QFLS P TLHKA
SWAGKM3 LSONFPADQO QGNAWTI VELSP TLKNA
Smnd5440 \"ISIN\"PIQ\I‘ INQTPVW QGISP TLKA
HIW-1 QY¥SQNYPIVONLQGOMYMIGATISP TLHNA
HIV1-MDK QVSONYPIVONLOQGOMY QAISP TLHKNA
Shepz A\"SINYPVVQNAQGQLV QFMS P TLHKA
ClVepzUS IGSSENYPVIOQNAQGOMY QAMS P TLKNA
ShepzTAN1 SGSIL\"P\FIT AQGVA QPISP TLKA
Shman VPSGNYPVVRITQGGGFQ QA\"IP |_|_I1-
Shhoast GGNYPLI NQ WY TPLSP TIQT
165 ||
Rl [o
187
[N T N T e
! 1] N
l“l“l h :; ‘ i [e 'il i ‘ T . |I
| N | gL L
lﬁlllllllll I |- “I||I||] IIIII 0 = g II | IIIIII IIII IIIIIIII
[- | 5eq - | Aln —-- |
3 Click a letter or a region. The selected region is the center block. You can then drag the

sequence(s) to the left or right of the center block.

3-45

3 Sequence Analysis

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
A4 A @)=

-

Consensus @ ETAEK - - - = = - - - - MPOQTSRPTAIP|=- = = = = = = = = = = = === @=== PSG-GGNYPVORO-VGGNYVHOPLSPRTLNA
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185

Hvz TGTAEM. - MPS5TS FTAIPY. . . . - 0 s s s e s e 55 GGN‘I"P\"QI.\"GGNYT IPLSPRTLNA
Hvamcnis TeTAER. MENTSRPETAIP. . . o o o oo . PSGRIGGENFPVOQ. VEGNYTHYPLSPRTLNGA
SWMM251 TG TAEBT MPETS BTN oL SS5GRIGGNYPVOQ. IGGNYYVY LEPLSPFRTLNA
SvMM23 TGETTET HPITS BETRABY Lo SEGRIGGNYPVOOQ. IGENYVW LPELSPFRTLHNA
Hvouct v . . CEM. L. MPATSRIPTAIR|. PS . .GENYPVQQ.TAGNYVHMPLSPRITLNA
SvemSLazh SGTAEM. LPAGS Talpl. oo PS..GGNYPYOQ. VENNYYHTPLSPRTLNGA
SWAGMETTA [N Talpl. oL Pﬁﬁlslnvwvvn_qnnnuv QPLSPRITLNA
SAGM Twlel. L. PGG.SONFPADO. QGNAWIMVPLSPRTLNA
SWmnd5440 TAI.{‘T? ________________ PAVIE.N\'PIQU tnaTepvillocIspPRITL N A
HIv-1 YPIVOQNLOQGOMVEICAISPRTLNA
HIV1-NDK YPIVONLOGOMYHOQAISPRTLNGA
Shepz YPVVONAQGOLVHEIOPMS PRITLHNA
ChepzUS YPVIQNAQGOMVEIOAMSPRITLNA
SNepzTANA LYPVITDAQGWYA apP1IsPRITLNA
Smon YPYVVYEBITAGGGFQ QA\"IP LLIT
Shihoost (GG O T v o vt e e e e YPLI naRwvBHTPLSPRTIOGT

115 120 125 130 135 140 145 150 155 160 165 1

-

1| [IO

i B

JUTEN s

|l

STVmds440 | Seq 9 | Aln 140 |

3-46

4

To move a single letter (T in this example), click and drag the letter T (center block) to the right

to insert a gap.

View and Align Multiple Sequences

[#] Biological Sequence Alignment - 1 - O >
File Edit Display Help N
A AR
-
Consensus (2 &
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
Hvz[TGTAER. MPSTSRPETAP[[... 55 GGNYPVQI.VGGNYT IPLSPRTLNA
HvzmchiZ TG TAEM. MENTSRETAPR[[... oo o .. PSGRIGGNFPVOQ.VGGNYTHIVPLSPRITLNA
SWMM251 TETAET meRTsReTaR[[o SSGRIGENYPVOQ. IGGNYVHILPLSPRITLNA
SWMMzaa TETTET HPITS PTAPL[. ..o oo sSsCRIGENYPVOQ. IGENYVHILPLSPRTLNA
mvzuci [T . . CEM. meaTs@eTarl [... 0oL PS..GENYPVQQ.ITAGNYVHIMPLSPRITLNA
ShsmSLEzh SGTAER. LePaQsRIPTAPRL| ..o oo oL PS..GGNYPVQQ.VGNNYVYHITPLSPRITLNA
SMAGMETTA N B - R R PGGISINYPVVN.QNNAUV QPLSPRITLNA
SMAGM3 N VTVERLL Lo PCG.SQNFPAQQ.QGNAWIHIVPLSPRITLNA
SMmnd5440 ATA LR ..o PAVEN\'PIQU tngTevHlacIsPRITLNA
Hivel A QQAA v o o CABTGNMN . o o oo e e e e e e e e SQVSOQNYPIVAQNLOQGOMYIoAISPRATL N A
Hivi-nok T @@ A A oo L LADRS . L. e oo SQYSQNYPIVANLQGOMVEloAISPRITLNA
Swepz [@EVAQP0QQ@QB. .. || SAVSINYPVVQNAQGQLV aPMsSPRITLNA
ClVepzUS ASG. . .|| oo SNIGSSNYPVIQNAQGOMVEloAMSPRITLNA
ShcpzTANI NS TATS QNAG-TVPPSGNTGNTGI ITPscsl YPVITDAQGVYA arpIseITLNA
swmon (@G EQRIA L AAAMAPPTG . [[0 oo oo cvPSGNYPVVRITOGGGF QA\"IP LLIT
Swihosst [GEMBIQ @ T L Lo e e e GGNYPLI NaQRw TPLseP@TIOQT
115 120 125 130 135 140 45 150 155 180 165 |
-
1| [IO
15 187
il I i l | I' | | | 1 [®
I VEU I WU
' l“l“l I h o L e 1] ‘ IRy Ml |
ol LT, N S
mlll I 1 I II I I !I II ! |- . Ll 15 1 IIIII 1 II n [1 1 [l]] IIIIII] II IIIl III !
[STVmds440 | Seq 9 | Aln 140 |

5

Close the gap by dragging the letter back to the left.

3-47

Sequence Analysis

3-48

[#] Biological Sequence Alignment - 1 - O >
File Edit Display Help N
A4 4% @ =
Consensus @ ETAEK - - - = = - - - - MPOQTSRPTAIP|- = = = = = = = = = = = = = = = = = PSEG-GGEGNYPVOOQ-VEGNYVHOQPLSPRTLHNA
15 120 125 130 135 40 145 150 155 160 165 o 175 180 185
Hvz[TGTAEM. 73 L3 Y 55 GGNYPVQI.VGGNYT IPLSPRITLNA
HvaMmcNia TG TAER. APl . o oo PSGRIGGNFPVYOQ . VGGNYTHVYPLSPRTLNA
SWMM2EY TG TAET APl . oo SEGRIGGENYPVOQ . IGGNYVHLPLSPRTLNA
SWMM23g TGETTET 3 [SSCREEHNYPVOD . IGCENYVHLPLSPRTLHNA
Hvezuct (T - - -EB. L. 3 - PS . .GENYPVOQ.IAGNYVHMPLSPRITLNA
SvemSLazh SGTAEMR. 73 L3 Y PS5 . .GGNYPVYOQ.VGNNYVYVHTPLSPRTLNA
SNAGMETTA RN s e e e PGGISINYPVVN.QNNAUV QFLS P TLHKA
SIVAGKMI VIR .o PGG.SOQNFPAQO .QGNAWIRBVPLSPRTLNA
SN 5440 . = - PAVIE.N\'PIQU itngTPvHoGcIs PRITLNA
HIW-1 YPIVOAQNLOQGOMYMEIOATISP TLHNA
HIV1-MDK YPIVONLOQGOQMY QAISP TLHKNA
Sepz YPVVONAQGOQLY QFMS P TLHKA
CVepzUS ¥YPVIOQNAQGOMY QAMS P TLKNA
SNepzTANA LYPVITDAGQGVA GPISPRTLHNA
Smon Y PVY TQGGGFQ QA\"IP LLIT
Shihoast (GG Q@ T oo e ¥PLI NQRwvYHTPLSPRTIGQT
d45 120 125 130 135 140 145 150 155 160 165 1
[O
187
ST [I i e
1|| | T T
1 H 1 n |
| L1 i|||II U IiI U 1 Il | I
il ' I i gL T
1 |I [N} 1 1] |
wllll I IIIII 1 IIIII 1 III 1 1 l IIIII II IIIIIII
STVmds440 | Seq 9 | Aln 136 |
6 You can also move multiple residues (a subsequence). Suppose you want to move a subsequence

to available gaps. First select the gap region that you want to fill in.

View and Align Multiple Sequences

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
44%|@ =
=
Consansus REGEIIREESEEE HEITEI TR PSG-GGNYPVOQ-VGGNYVHOPLSPRTL
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
mvz[AETEGTAEM. MPSTSRPTAP|.« ... s s GGNYPVQI. YT
Hvzmcniz AETGTAEM. meNTSRPTAR|.o PSGRIGENFPVQQ . v T
SwMMzsT METGTAET melrs@eTar|. .. sscRlcenyPvoaq. v v
svmmzas METETTET - melTsRPTAR. ... ssclcenvypvaoan . Vv
S el MPATSRIPTAP|. PS..GGNYPVQQ . Vv
ShemsLazn W ESGTAEM. PTAP| « o o it i PS..GGNYPVQQ. ¥
svacnera DBl CTTARL Lo PGGISINYPV‘VN. "R%
SIVAGHS VTV L PGG.SQNFPAQQ wI
swmnasiao M ERMEIN AAS a7 & 7[R PlVENYPIQV PV
vt EOMA Q@ A A RV . SQVSQNYPIVQN M v
HIVINDK RORBRIT @ @ A A - . o o v v v v ADS o v e e | e e e LSQVSQNYPIVQN M v
Shepz MEQEVAQP I __________________ _savslrnfpvvqn Lv
cvepeus Rloc EE@EQ L. L ASG . | SNIGSSNYPVIQN MV
ShepzTant EINNSTATS .. L QN A TITPSGSILYPU]’.T A
S AAAAAPPTG . [o o o oottt e LEVPEGNYPVY F
swihoast A A GIIRIQ QT - GGNYPLI
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
1=
]

B

LI G

1
SIVmds440 | Seq 9 | Aln 17 |

)
00
A LN

7 Drag the subsequence(s) from the right or left of the gap region into the gap area.

3-49

3 Sequence Analysis

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
AAA|@E
-
Consensus A EQGTAEK - = = = = = = - = MPQTSRPTAP[- - - - - - oo a oo s PSG-GGNYPVQQ-VGGNYVHOQPLS PRTL
115 120 125 130 135 40 145 150 155 160 165 170 175 180 185
Hvz AETGTAENR. MPSTSEIPTAP|.00 5 5 GGNYP
Hvamoni WETGTAER. MPRTSRIPTAP[. . .. i i oot PsSGRGGNFP
SwmMzs1 METGTAET meRTSRIPTAR SSGRGGNYP
SwMMza METETTET me@TsReTapl. ..o sscRlceNnyY P
wvzuci AeT . . M. MmeaTsRIPTAR[. ... L PS..GEGNYP
swsmslazn MESGTAER. PTAPR oo oo PS..GGNYP
swacmsrra PRONERA A CTTAPR| L PGGISINYP
SIVAGMI VTVPRL L PGG.SQNFP
Svmndsiao MERIE N A AS L . L L L. L ATAT[.. o nQV.INQTPV
Hiv- R A @ @A A CABTENMN. . . .foov i vn e nne SQVSQNYEP
HIvi-nDK [BIEERIT Q @ A A o0 0 0 CADRS L L e e e e -S5QVSaQNYP
Shepz MEQEVAQP I .SAVS ¥ P
civeus O EEMER ASG NIGSSENYP
ShepzTant EINNSTATS .. L QN A pscsll_vp
A AAMAAAPPETGE .. o o v vttt CVPSENY P
Swinosst (A A GIIRIQ @ T . . . Lo e eGEGNYP
115 120 125 130 135 140 145 150 155 160 165
|
o

|

i

Il i /H"' l\..l

TH]

SDde5443 | 5eq

9 | Aln 155 |

8 Suppose you want to remove one or more of the aligned sequences. First select the sequence(s)

to be removed. Then select Edit > Delete Sequences.

3-50

View and Align Multiple Sequences

{4 Biological Sequence Alignment - 1 — O >
File Edit Display Help N
Az 2 Copy Ctrl+C
Delete Sequences I -
Lag
Select All Chrle A | ——m—— e
P =MPOTSRPTAP == === ==2®2®c=2=2=m2===2=2== PSG-GGNYPVOROQ-VGGNYVHOQPLSPRTLNA
Deselect All
130 135 140 145 150 155 160 165 7o 175 160 185
Move Rows(s) up
55 GG N P\"QI.\"GGNY FL TLHNA
Mowve Rows(s) down
HIW PSGRIGGNFPVQQ.VGGEGNY B L TLNA
Move Rows(s) to Top
= 585G GG N PVOQ.IGGNY FL TLHNA
Move Rows(s) to Bottom
= 556G GGHN PVOOQ.IGGNY TLHNA
Remove Empty Columns PS..GCENYPVQQ.TAGHNY TLWA
swemsLazp S G TAEM. VOOQ.VGENNY TLNA
SENAGMETTA IN ERNA A BN VY N.QNKAW TLHKA
SNMAGMI AQGQ.0QG w TLKNA
Shmnds440 RRE N A A S . . 0 0 L L L L L IgVv. TLHNA
Hv-1 A @QAA o CADTENHN . . v vt e e e e e e e e e e IVQNLQGQOM TLHA
Hivi-nDK BT @0 A A « - AS . . & & & & = & & s o= o= ow o8 om s s s s & o= & o= s s IVOQNLOQGOM TLHKNA
SWepz [REVAQP L L L.0QQQQD VYaQNAQGOL TLNA
cives R EEMEQ L. VIQHNAQGQGM TLNA

d45 120 125 130 135 140 145 150 155 160 165 7o 175 180 185 1
=
| »
115 187
y l | I | | | 1 : TN [
| | 1 | "
1 H n |
11 1 P 1 , I | |
|| | d I 1| ! l |L l “I J |
J II |I II‘Illl L} III ! [] 1 1 (It] 1 1 fmirn

--- | 58g --- | Aln --- |

9 Remove empty columns by selecting Edit > Remove Empty Columns.

3-51

3 Sequence Analysis

4. Biological Sequence Alignment - 1 — O >
File Edit Display Help N
Az 2 Copy Ctrl+C

Delete Sequences

-
Select All o g e— .

¢ =MPNTSRPTAPG-=====2ooenneee===n= PSG-GGNYPVOQQO-IGGNYVHOQPLSPRTLNA
Deselect All

130 135 140 145 150 155 160 165 170 175 180 185

Tl 0y TmMPsTSRPTAP s sSE GGNYP\-‘QI.\-‘GGNYT TPLSPRITLN A

hl Vil den CMPNTSRIPTAP. . oot PSGRIGGNFPYQQ.VGGNYTHIVPLSPRITLNGA
TR) U T TSP TAPR . o ot e e e S5SGRIGGNYPVQQ.TGGNYVHILPLS PRITLNGA

T) AT TSRPTAP . o oot et sscRlccnyYyPvaa. TGENYVHILPLS PRITLNGA
Remove Empty Columns V\[\"__Mna'rs BTAP . . .o PS . GENYPVAOO. TAGHNYVHMPLSPRTLNA
svemslazn SGTAEM. LPAGSIMPTAP . o v ov vt et e e PS..GGNYPYQQ.VENNYVHTPLSPRITLNGA
svacmrra MEM. < 8. NE . TTAP . o v it e e et e PGGESINYPVVN.QNNAUV QPLsPRITLNA
SACK nTTETsscoBuo@evrve. PGG.SQNFPAQQ.QCGNAWIMVE LS PRITLNGA
svmnaseso BN A RE] EEERIGATAT . « oo e PAVISINYPIQV.INQTPV qcIspRITLNA
v BAQaAA ABTENN . o oot e e e SQVEQNYPIVANLAQGEQMVIMQATSPRITLNA
mvinok T QQAA AD S . o e e e sQVSQNYPIVANLQGOQMVMloaTIsPRITLNA
Swepz [QEVAQP eaaaeall. SAVSINYPVVQNAQGQLV QPmMsPRITLNA
ClVegzUS Q. gaalEasc. SNIGSSNYPVIQNAQGAMVMoAmMS PRITLNA
svmon @ E A AAAAAPPTE « o o oot e e e e cvrpsenvypvvlltacccraaavEr |_|_I'r
svinoest ENIQ QT GGNYPLII.ENQ wvlteLs P R(TIaT

120 125 130 135 140 145 150 185 160 165 170 175 180 185

MRl

O R TR

--- | 58g --- | Aln --- |

Kl [
1

15

|

10 After the edit, you can export the aligned sequences or consensus sequence to a FASTA file or
MATLAB Workspace from the File menu.

Rearrange Rows

You can move the rows (sequences) up or down by one row. You can also move selected rows to the
top or bottom of the list.

3-52

View and Align Multiple Sequences

zl Biological Sequence Alignment - 1

File Edit Display Help

Az 2 Copy Ctrl+C
Delete Sequences
Select All Ctrl+A
d - MPNTSRPTAPPSG-GGNYPVQQ-TIGGNYVHQPLSPRTLNAWVKLVEEKKFGPEVVPMEF
Deselect All
130 135 140 145 150 155 160 165 170 175 180 185
RousRoe =y mMersTSPTA GNYPVQI.VGGNYT VPEF
HI LimelEae s drm .MPNTSRIPT A GNFPYQQ.VGGNYT VPGF
M ERowEERGHIDn .Ml sReT A GHNYPYQQ.T1GGNYV VPGF
.mpTsRIPT A CEHNYPYQQ.TGGEGNYV VPEGF
Remove Empty Columns . MPATSRPTA ENYPVOO.TAGNYV VPEF
ShemsSLazh |5 & T A 5 TA GHNYPYQQ.VGNNYV VPGF
SIVAGMETTA [N TA NYPYVH.QNNAWY VEMFE

¥ Qv . INQTPV M

HIV-1 . ¥YPIVQNLQGQMY IPMFE

HIV1-NDK e5QVSQNYPIVQNLQGQMV IPMF
SNepz VAQP.Q000QQ0.....5AavsRNYPVVQNAQGQLYV IPMF

ClVepzUiSqqqlnsc...surcssuvnvrqunchnv IPMF
i . PR Q VALF
L ¥ P L v VAMFE

Shhoast

115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

-l

e —

--- | 5eq --- | Aln --- |

The selected sequence moves to the bottom of the list.

3-53

3 Sequence Analysis

[4] Biological Sequence Alignment - 1 — m} x
File Edit Display Help k]l
A AR E7EIE

-
Consensus (& TAEK - - - - - - - - - MPNTSRPTAPPSG-GGNYPVOQ-IGGNYVHOQPLSPRTLNAWVKLVEEKKFGPEVVPEMF
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
Hy2 |[TETAER. MPSTSRIPTAPSSERGGNY \"QI.\"GGNYT IPLS TLNAWVIELYEE FGAEVVPGF
HI\I'Z—MCN‘IETGT‘EI MPNTS PTAPPSGEIGGNFPYOQQ.VYGGNYTHIYPLS TLNAWY LW¥EE FGAEYVPGF
SWMM2sq ITETAET M P ET S PTAPSSGREIGGNYPYOQQ.IGGNYVW LFLS TLNAWY LIEE FGAEVVPGF
SVMMz3a [TETTET M P ET S PTAPSSGRIGGNY PVOQQ. IGGNYV LELS TLNAWYW LIEE FGAEVVPGF
Hiv-2uct [T - N D MPFATS PTAPPS . .GGNYPVOQ.ITAGNYVHEIMPLS TLNAWW L vEE FGAEVVPGF
ShesmSLEzh (S G TAER. LPAGQS PTAPPS. GGNYPYQQ.YGNNYVETPLS TLNAWY L¥EE FGAEVYVYPGF
SNAGWMNEIAA _________ .NE . TTAPPGGESINYPYVN .QNNAWVEIQPL S TLNAWVRICVEE WGAEVYVPMEF
Svmnesido IME N A A S oL ... EEEIGAT‘TPAVISINY 1qv.i1NaTPVvllacIs TLNAWVRICTEE FSPEIVPMF
HIv-1 AQOoAA ADTGHNN. SQVSONYPIVONLOQGOMVEIOATLS TLNAWVEYVIEEKAFSPEVIPMF
HIVA-NDI TQQaAA. AEgS L SEQVEQNYPIVOQNLOQGOGMVEIGQATIS TLHNAWVIEVIEERKAFSPEVIPMF
Shepz [REVAQP . L0000 gqegaoaom. SA\"SINY YYOQNAQGQLVYEGPMS TLNAWVYVEYIEEKNFNPEY IPMF
CIVCFIZLISQEE QQeQEASG SNIGSSNYPYIOQNAQGOMYEIGAMS TLNAWVEAVEEKAFNPEY IPMF
SNrncancE!l‘ AAAAAPPTG SGVMPSESGNYPYVVIRTOGGGF QEIQAVE LLITU\ll VIEE FAPEVWVALF
SWihosst |G QAT . .t EENYPLI EnaRlwviETeL S TrotTwviivEoRcwBrET vanme

-l

M

I LH-

||l
I8

i

..“J.'.

--- | 5eq --- | Aln --- |

3-54

Generate Phylogenetic Tree from Aligned Sequences

You can generate a phylogenetic tree using the aligned sequences from within the app. You can select
a subset of sequences or use all the sequences to generate a tree.

Select Display > View Tree > Selected... to generate a tree from selected sequences.

View and Align Multiple Sequences

[4] Biological Sequence Alignment - 1 — m} x
File Edit Display Help k]
A A A . Background

Zoom In =

Zoom Out nmn_q

Consens DEWEKIRLRPGGKKKYMLKHIVWAARELDRFGLNES LLETKEGCOQKILSVLAPLVYPTGS
Reset to Default Font Size
15 20 25 30 35 40 45 50 55 60 65 T0
Color Schemes

SMMM251
SNMM239
HIV-2UG1
SNsmSLaZh

SNAGMETTA

SNmnd5440
HIv-1
HIV1-NDE
Sepz
ClVepzUS
SNman

Shihoast

P o B B P o B B

s =2 w = F » > @
P o2 E <= = = = 0
[e

SNAGM3

45

50

[L B 2 N N L L 1)
(o T o T T o T o T B B]
L L L

-l

--- | 5eq --- | Aln --- |

A phylogenetic tree for the sequences is displayed in the Phylogenetic Tree app. For details on the

app, see “Using the Phylogenetic Tree App” on page 5-2.

3-55

3 Sequence Analysis

D

File Tools Window Help |
AT G EDE 2

1 HIV-2

HIVZ-MCN13

SIVMMZ51

SIVMM239

a
i

HIV-2UCH

® o { sivsmsL92h

[m]
i

SIVAGMETTA

0 0.05 0.1 0.15 0.2 0D.25 0.3

See Also
NGS Browser | Sequence Alignment | Sequence Viewer | seqalignviewer

More About

. “Sequence Alignments” on page 1-7
. “Aligning Pairs of Sequences”

3-56

Microarray Analysis

* “Managing Gene Expression Data in Objects” on page 4-2

* “Representing Expression Data Values in DataMatrix Objects” on page 4-5

* “Representing Expression Data Values in ExptData Objects” on page 4-9

* “Representing Sample and Feature Metadata in MetaData Objects” on page 4-12
* “Representing Experiment Information in a MIAME Object” on page 4-16

* “Representing All Data in an ExpressionSet Object” on page 4-19

* “Visualizing Microarray Images” on page 4-23

4 Microarray Analysis

Managing Gene Expression Data in Objects

4-2

Microarray gene expression experiments are complex, containing data and information from various
sources. The data and information from such an experiment is typically subdivided into four
categories:

* Measured expression data values

* Sample metadata

* Microarray feature metadata

» Descriptions of experiment methods and conditions

In MATLAB, you can represent all the previous data and information in an ExpressionSet object,
which typically contains the following objects:

* One ExptData object containing expression values from a microarray experiment in one or more
DataMatrix objects

* One MetaData object containing sample metadata in two dataset arrays

* One MetaData object containing feature metadata in two dataset arrays

* One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component objects.

Managing Gene Expression Data in Objects

ExpressionSet object

DataMatrix object DataMatrix object DataMatrix object g

dataset array

Each element (DataMatrix object) in the ExpressionSet object has an element name. Also, there is
always one DataMatrix object whose element name is Expressions.

An ExpressionSet object lets you store, manage, and subset the data from a microarray gene
expression experiment. An ExpressionSet object includes properties and methods that let you access,
retrieve, and change data, metadata, and other information about the microarray experiment. These
properties and methods are useful to view and analyze the data. For a list of the properties and
methods, see ExpressionSet class.

To learn more about constructing and using objects for microarray gene expression data and
information, see:

* “Representing Expression Data Values in DataMatrix Objects” on page 4-5
* “Representing Expression Data Values in ExptData Objects” on page 4-9

4-3

4 Microarray Analysis

» “Representing Sample and Feature Metadata in MetaData Objects” on page 4-12
* “Representing Experiment Information in a MIAME Object” on page 4-16
+ “Representing All Data in an ExpressionSet Object” on page 4-19

4-4

Representing Expression Data Values in DataMatrix Objects

Representing Expression Data Values in DataMatrix Objects

In this section...

“Overview of DataMatrix Objects” on page 4-5
“Constructing DataMatrix Objects” on page 4-5
“Getting and Setting Properties of a DataMatrix Object” on page 4-6

“Accessing Data in DataMatrix Objects” on page 4-6

Overview of DataMatrix Objects

The toolbox includes functions, objects, and methods for creating, storing, and accessing microarray
data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to encapsulate
data and metadata (row and column names) from a microarray experiment. A DataMatrix object
stores experimental data in a matrix, with rows typically corresponding to gene names or probe
identifiers, and columns typically corresponding to sample identifiers. A DataMatrix object also stores
metadata, including the gene names or probe identifiers (as the row names) and sample identifiers
(as the column names).

You can reference microarray expression values in a DataMatrix object the same way you reference
data in a MATLAB array, that is, by using linear or logical indexing. Alternately, you can reference this
experimental data by gene (probe) identifiers and sample identifiers. Indexing by these identifiers lets
you quickly and conveniently access subsets of the data without having to maintain additional index
arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects by means of
methods. These methods let you modify, combine, compare, analyze, plot, and access information
from DataMatrix objects. Additionally, you can easily extend the functionality by using general
element-wise functions, dmarrayfun and dmbsxfun, and by manually accessing the properties of a
DataMatrix object.

Note For tables describing the properties and methods of a DataMatrix object, see the DataMatrix
object reference page.

Constructing DataMatrix Objects

1 Load the MATile, provided with the Bioinformatics Toolbox software, that contains yeast data.
This MAT-file includes three variables: yeastvalues, a 614-by-7 matrix of gene expression data,
genes, a cell array of 614 GenBank accession numbers for labeling the rows in yeastvalues,
and times, a 1-by-7 vector of time values for labeling the columns in yeastvalues.

load filteredyeastdata
2 (Create variables to contain a subset of the data, specifically the first five rows and first four
columns of the yeastvalues matrix, the genes cell array, and the times vector.

yeastvalues = yeastvalues(1:5,1:4);
genes genes(1:5,:);
times times(1:4);

4 Microarray Analysis

4-6

3 Import the microarray object package so that the DataMatrix constructor function will be
available.

import bioma.data.*

4 Use the DataMatrix constructor function to create a small DataMatrix object from the gene
expression data.

dmo = DataMatrix(yeastvalues,genes,times)

dmo =
0 9.5 11.5 13.5
SS DNA -0.131 1.699 -0.026 0.365
YALOO3W 0.305 0.146 -0.129 -0.444
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Getting and Setting Properties of a DataMatrix Object

You use the get and set methods to retrieve and set properties of a DataMatrix object.
1 Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)

Name: "'

RowNames: {5x1 cell}

ColNames: {' o' ' 9.5' '11.5' '13.5'}
NRows: 5
NCols: 4
NDims: 2

ElementClass: 'double’

2 Use the set method to specify a name for the DataMatrix object, dmo.

dmo = set(dmo, 'Name', 'MyDMObject');
3 Use the get method again to display the properties of the DataMatrix object, dmo.

get(dmo)

Name: 'MyDMObject'’

RowNames: {5x1 cell}

ColNames: {' o' ' 9.5' '11.5' '13.5'}
NRows: 5
NCols: 4
NDims: 2

ElementClass: 'double’

Note For a description of all properties of a DataMatrix object, see the DataMatrix object reference
page.

Accessing Data in DataMatrix Objects

DataMatrix objects support the following types of indexing to extract, assign, and delete data:

Representing Expression Data Values in DataMatrix Objects

* Parenthesis () indexing
* Dot . indexing

Parentheses () Indexing

Use parenthesis indexing to extract a subset of the data in dmo and assign it to a new DataMatrix
object dmo2:

dmo2 = dmo(1:5,2:3)
dmo2 =
9.5 11.5

SS DNA 1.699 -0.026
YALOO3W 0.146 -0.129
YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

Use parenthesis indexing to extract a subset of the data using row names and column names, and
assign it to a new DataMatrix object dmo3:

dmo3 = dmo({'SS DNA', 'YALO12W', 'YALO34C'},'11.5")

dmo3 =
11.5
SS DNA -0.026
YALO12W 0.467
YALO34C -0.184

Note If you use a cell array of row names or column names to index into a DataMatrix object, the
names must be unique, even though the row names or column names within the DataMatrix object
are not unique.

Use parenthesis indexing to assign new data to a subset of the elements in dmo2:

dmo2({'SS DNA', 'YALOO3W'}, 1:2) = [1.700 -0.030; 0.150 -0.130]

dmo2 =
9.5 11.5
SS DNA 1.7 -0.03
YALOO3W 0.15 -0.13
YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

Use parenthesis indexing to delete a subset of the data in dmo2:

dmo2({'SS DNA', 'YALOO3W'}, :) = []

dmo2 =
9.5 11.5
YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

4 Microarray Analysis

Dot . Indexing

Note In the following examples, notice that when using dot indexing with DataMatrix objects, you
specify all rows or all columns using a colon within single quotation marks, (':"').

Use dot indexing to extract the data from the 11.5 column only of dmo:

timeValues dmo.(':')('11.5")

timeValues

-0.0260
-0.1290
0.4670
0.3840
-0.1840

Use dot indexing to assign new data to a subset of the elements in dmo:

dmo.(1:2)(':"') =7

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Use dot indexing to delete an entire variable from dmo:

dmo.YALO34C = []

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981

Use dot indexing to delete two columns from dmo:

dmo.(':")(2:3)=[]

dmo =
0 13.5
SS DNA 7 7
YALOO3W 7 7
YALO12W 0.157 -0.379
YALO26C 0.246 0.981

4-8

Representing Expression Data Values in ExptData Objects

Representing Expression Data Values in ExptData Objects

In this section...

“Overview of ExptData Objects” on page 4-9
“Constructing ExptData Objects” on page 4-9

“Using Properties of an ExptData Object” on page 4-10
“Using Methods of an ExptData Object” on page 4-10

“References” on page 4-11

Overview of ExptData Objects

You can use an ExptData object to store expression values from a microarray experiment. An
ExprData object stores the data values in one or more DataMatrix objects, each having the same row
names (feature names) and column names (sample names). Each element (DataMatrix object) in the
ExptData object has an element name.

The following illustrates a small DataMatrix object containing expression values from three samples
(columns) and seven features (rows):

A B C
100001_at 2.26 20.14 31.66
100002_at 158.86 236.25 206.27
100003_at 68.11 105.45 82.92
100004 _at 74.32 96.68 84.87
100005_at 75.05 53.17 57.94
100006_at 80.36 42.89 77.21

100007 at 216.64 191.32 219.48

An ExptData object lets you store, manage, and subset the data values from a microarray experiment.
An ExptData object includes properties and methods that let you access, retrieve, and change data
values from a microarray experiment. These properties and methods are useful to view and analyze
the data. For a list of the properties and methods, see ExptData class.

Constructing ExptData Objects

The mouseExprsData. txt file used in this example contains data from Hovatta et al., 2005.

1 Import the bioma.data package so that the DataMatrix and ExptData constructor functions
are available.
import bioma.data.*

2 Use the DataMatrix constructor function to create a DataMatrix object from the gene
expression data in the mouseExprsData. txt file. This file contains a table of expression values
and metadata (sample and feature names) from a microarray experiment done using the
Affymetrix MGU74Av2 GeneChip array. There are 26 sample names (A through Z), and 500
feature names (probe set names).
dmObj = DataMatrix('File', 'mouseExprsData.txt');

3 Use the ExptData constructor function to create an ExptData object from the DataMatrix object.

EDObj = ExptData(dmObj);

4-9

4 Microarray Analysis

4-10

4 Display information about the ExptData object, EDObj.
EDOb

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmtl

Note For complete information on constructing ExptData objects, see ExptData class.

Using Properties of an ExptData Object
To access properties of an ExptData object, use the following syntax:
objectname.propertyname
For example, to determine the number of elements (DataMatrix objects) in an ExptData object:
EDObj .NElements
ans =
1
To set properties of an ExptData object, use the following syntax:
objectname.propertyname = propertyvalue
For example, to set the Name property of an ExptData object:

EDObj.Name = 'MyExptDataObject'

Note Property names are case sensitive. For a list and description of all properties of an ExptData
object, see ExptData class.

Using Methods of an ExptData Object
To use methods of an ExptData object, use either of the following syntaxes:
objectname .methodname
or
methodname (objectname)
For example, to retrieve the sample names from an ExptData object:
EDObj .sampleNames
Columns 1 through 9
‘A 'B' 'C' ‘D! 'E' 'F! 'G' 'H! ‘I

To return the size of an ExptData object:

Representing Expression Data Values in ExptData Objects

size(EDObj)
ans =

500 26

Note For a complete list of methods of an ExptData object, see ExptData class.

References

[1] Hovatta, I., Tennant, R S., Helton, R, et al. (2005). Glyoxalase 1 and glutathione reductase 1
regulate anxiety in mice. Nature 438, 662-666.

4-11

4 Microarray Analysis

Representing Sample and Feature Metadata in MetaData
Objects

4-12

In this section...

“Overview of MetaData Objects” on page 4-12
“Constructing MetaData Objects” on page 4-13
“Using Properties of a MetaData Object” on page 4-15
“Using Methods of a MetaData Object” on page 4-15

Overview of MetaData Objects

You can store either sample or feature metadata from a microarray gene expression experiment in a
MetaData object. The metadata consists of variable names, for example, related to either samples or
microarray features, along with descriptions and values for the variables.

A MetaData object stores the metadata in two dataset arrays:

* Values dataset array — A dataset array containing the measured value of each variable per
sample or feature. In this dataset array, the columns correspond to variables and rows correspond
to either samples or features. The number and names of the columns in this dataset array must
match the number and names of the rows in the Descriptions dataset array. If this dataset array
contains sample metadata, then the number and names of the rows (samples) must match the
number and names of the columns in the DataMatrix objects in the same ExpressionSet object. If
this dataset array contains feature metadata, then the number and names of the rows (features)
must match the number and names of the rows in the DataMatrix objects in the same
ExpressionSet object.

* Descriptions dataset array — A dataset array containing a list of the variable names and their
descriptions. In this dataset array, each row corresponds to a variable. The row names are the
variable names, and a column, named VariableDescription, contains a description of the
variable. The number and names of the rows in the Descriptions dataset array must match the
number and names of the columns in the Values dataset array.

The following illustrates a dataset array containing the measured value of each variable per sample
or feature:

MMO O @ >

Gender
'Male'
'Male'
'Male'
'Male'
'Male'
'Male'

Age Type Strain Source

8 'Wild type' '129S6/SvEvTac' 'amygdala’
8 'Wild type' '129S6/SvEvTac' 'amygdala’
8 'Wild type' '129S6/SvEvTac' 'amygdala’
8 'Wild type' 'A/J ! 'amygdala’
8 'Wild type' 'A/J ! 'amygdala’
8 'Wild type' 'C57BL/6J ' 'amygdala’

The following illustrates a dataset array containing a list of the variable names and their descriptions:

id
Gender
Age
Type
Strain
Source

VariableDescription

'Sample identifier'

'Gender of the mouse in study'

'"The number of weeks since mouse birth'
'Genetic characters'

'The mouse strain'

'The tissue source for RNA collection'

Representing Sample and Feature Metadata in MetaData Objects

A MetaData object lets you store, manage, and subset the metadata from a microarray experiment. A
MetaData object includes properties and methods that let you access, retrieve, and change metadata
from a microarray experiment. These properties and methods are useful to view and analyze the
metadata. For a list of the properties and methods, see MetaData class

Constructing MetaData Objects

Constructing a MetaData Object from Two dataset Arrays
1 Import the bioma.data package so that the MetaData constructor function is available.

import bioma.data.*

2 Load some sample data, which includes Fisher’s iris data of 5 measurements on a sample of 150
irises.

load fisheriris

3 Create a dataset array from some of Fisher's iris data. The dataset array will contain 750
measured values, one for each of 150 samples (iris replicates) at five variables (species, SL, SW,
PL, PW). In this dataset array, the rows correspond to samples, and the columns correspond to
variables.

irisValues = dataset({nominal(species), 'species'}, ...
{meas, 'SL', 'SW', 'PL', 'PW'});

4 Create another dataset array containing a list of the variable names and their descriptions. This
dataset array will contain five rows, each corresponding to the five variables: species, SL, SW, PL,
and PW. The first column will contain the variable name. The second column will have a column
header of VariableDescription and contain a description of the variable.

% Create 5-by-1 cell array of description text for the variables
varDesc = {'Iris species', 'Sepal Length', 'Sepal Width',
'Petal Length', 'Petal Width'}';
% Create the dataset array from the variable descriptions
irisVarDesc = dataset(varDesc,
'ObsNames', {'species','SL','SW','PL','PW'},
'VarNames', {'VariableDescription'})

irisVarDesc =
VariableDescription
species 'Iris species'
SL 'Sepal Length'
SwW 'Sepal Width'
PL 'Petal Length'
PW 'Petal Width'

5 Create a MetaData object from the two dataset arrays.
MDObjl = MetaData(irisValues, irisVarDesc);
Constructing a MetaData Object from a Text File

1 Import the bioma.datapackage so that the MetaData constructor function is available.

import bioma.data.*
2 View the mouseSampleData. txt file included with the Bioinformatics Toolbox software.

4-13

4 Microarray Analysis

Note that this text file contains two tables. One table contains 130 measured values, one for each
of 26 samples (A through Z) at five variables (Gender, Age, Type, Strain, and Source). In this
table, the rows correspond to samples, and the columns correspond to variables. The second
table has lines prefaced by the # symbol. It contains five rows, each corresponding to the five
variables: Gender, Age, Type, Strain, and Source. The first column contains the variable name.
The second column has a column header of VariableDescription and contains a description
of the variable.

id: Sample identifier

Gender: Gender of the mouse in study

Age: The number of weeks since mouse birth

Type: Genetic characters

Strain: The mouse strain

Source: The tissue source for RNA collection
ID Gender Age Type Strain Source

A Male 8 Wild type 129S6/SvEvTac amygdala

B Male 8 Wild type 129S6/SvEvTac amygdala

C Male 8 Wild type 129S6/SvEvTac amygdala

D Male 8 Wild type A/J amygdala

E Male 8 Wild type A/J amygdala

F Male 8 Wild type C57BL/63J amygdala

G Male 8 Wild type C57BL/6J amygdala

H Male 8 Wild type 129S6/SvEvTac cingulate cortex
I Male 8 Wild type 129S6/SvEvTac cingulate cortex
J Male 8 Wild type A/J cingulate cortex

K Male 8 Wild type A/J cingulate cortex

L Male 8 Wild type A/J cingulate cortex

M Male 8 Wild type C57BL/6J cingulate cortex
N Male 8 Wild type C57BL/6J cingulate cortex
0 Male 8 Wild type 129S6/SvEvTac hippocampus
P Male 8 Wild type 129S6/SvEvTac hippocampus
Q Male 8 Wild type A/J hippocampus

R Male 8 Wild type A/J hippocampus

S Male 8 Wild type C57BL/6J hippocampus

T Male 8 Wild type C57BL/6J4 hippocampus

U Male 8 Wild type 129S6/SvEvTac hypothalamus
v Male 8 Wild type 129S6/SvEvTac hypothalamus
W Male 8 Wild type A/J hypothalamus

X Male 8 Wild type A/J hypothalamus

Y Male 8 Wild type C57BL/6J hypothalamus

z Male 8 Wild type C57BL/6J hypothalamus

3 Create a MetaData object from the metadata in the mouseSampleData. txt file.
MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar',6 '#')
Sample Names:

A, B, ...,Z (26 total)
Variable Names and Meta Information:

VariableDescription
Gender ' Gender of the mouse in study'
Age ' The number of weeks since mouse birth'
Type ' Genetic characters'
Strain ' The mouse strain'
Source ' The tissue source for RNA collection'

For complete information on constructing MetaData objects, see MetaData class.

4-14

Representing Sample and Feature Metadata in MetaData Objects

Using Properties of a MetaData Object
To access properties of a MetaData object, use the following syntax:
objectname.propertyname
For example, to determine the number of variables in a MetaData object:
MDObj2.NVariables
ans =

5
To set properties of a MetaData object, use the following syntax:
objectname.propertyname = propertyvalue
For example, to set the Description property of a MetaData object:

MDObjl.Description = 'This is my MetaData object for my sample metadata'

Note Property names are case sensitive. For a list and description of all properties of a MetaData
object, see MetaData class.

Using Methods of a MetaData Object
To use methods of a MetaData object, use either of the following syntaxes:
objectname.methodname

or

methodname (objectname)

For example, to access the dataset array in a MetaData object that contains the variable values:

MDObj2.variableValues;

To access the dataset array of a MetaData object that contains the variable descriptions:

variableDesc(MDObj2)
ans =
VariableDescription
Gender ' Gender of the mouse in study'
Age ' The number of weeks since mouse birth'
Type ' Genetic characters'
Strain ' The mouse strain'

Source The tissue source for RNA collection'

Note For a complete list of methods of a MetaData object, see MetaData class.

4-15

4 Microarray Analysis

Representing Experiment Information in a MIAME Object

4-16

In this section...

“Overview of MIAME Objects” on page 4-16
“Constructing MIAME Objects” on page 4-16
“Using Properties of a MIAME Object” on page 4-17
“Using Methods of a MIAME Object” on page 4-18

Overview of MIAME Objects

You can store information about experimental methods and conditions from a microarray gene
expression experiment in a MIAME object. It loosely follows the Minimum Information About a
Microarray Experiment (MIAME) specification. It can include information about:

Experiment design

Microarrays used

Samples used

Sample preparation and labeling
Hybridization procedures and parameters
Normalization controls

Preprocessing information

Data processing specifications

A MIAME object includes properties and methods that let you access, retrieve, and change
experiment information related to a microarray experiment. These properties and methods are useful
to view and analyze the information. For a list of the properties and methods, see MIAME class.

Constructing MIAME Objects

For complete information on constructing MIAME objects, see MIAME class.

Constructing a MIAME Object from a GEO Structure

1

Import the bioma.data package so that the MIAME constructor function is available.

import bioma.data.*

Use the getgeodata function to return a MATLAB structure containing Gene Expression
Omnibus (GEO) Series data related to accession number GSE4616.

geoStruct = getgeodata('GSE4616')

geoStruct

Header: [1x1 struct]
Data: [12488x12 bioma.data.DataMatrix]

Use the MIAME constructor function to create a MIAME object from the structure.

MIAMEObj1l = MIAME(geoStruct);

Representing Experiment Information in a MIAME Object

4 Display information about the MIAME object, MIAMEOb].
MIAMEObj 1
MIAMEObj1 =

Experiment Description:
Author name: Mika,,Silvennoinen
Riikka, ,KivelAx
Maarit,,Lehti
Anna-Maria,,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x80 char]

Constructing a MIAME Object from Properties
1 Import the bioma.data package so that theMIAME constructor function is available.

import bioma.data.*
2 Use the MIAME constructor function to create a MIAME object using individual properties.

MIAMEObj2 = MIAME('investigator', 'Jane Researcher',...
'lab', 'One Bioinformatics Laboratory',...
'contact', 'jresearcher@lab.not.exist',...
‘url', 'www.lab.not.exist',...
'title', 'Normal vs. Diseased Experiment',...
'abstract', 'Example of using expression data',...
'other', {'Notes:Created from a text file.'});

3 Display information about the MIAME object, MIAMEODb] 2.
MIAMEObj2
MIAMEObj2 =
Experiment Description:
Author name: Jane Researcher
Laboratory: One Bioinformatics Laboratory
Contact information: jresearcher@lab.not.exist
URL: www.lab.not.exist
PubMedIDs:
Abstract: A 4 word abstract is available. Use the Abstract property.
No experiment design summary available.

Other notes:
'Notes:Created from a text file.'

Using Properties of a MIAME Object
To access properties of a MIAME object, use the following syntax:
objectname.propertyname

For example, to retrieve the PubMed identifier of publications related to a MIAME object:

MIAMEObj1.PubMedID

ans =

4-17

4 Microarray Analysis

4-18

17003243

To set properties of a MIAME object, use the following syntax:
objectname.propertyname = propertyvalue

For example, to set the Laboratory property of a MIAME object:

MIAMEObjl.Laboratory = 'XYZ Lab'

Note Property names are case sensitive. For a list and description of all properties of a MIAME
object, see MIAME class.

Using Methods of a MIAME Object

To use methods of a MIAME object, use either of the following syntaxes:
objectname .methodname

or

methodname (objectname)

For example, to determine if a MIAME object is empty:
MIAMEObjl.isempty

ans =

0

Note For a complete list of methods of a MIAME object, see MIAME class.

Representing All Data in an ExpressionSet Object

Representing All Data in an ExpressionSet Object

In this section...

“Overview of ExpressionSet Objects” on page 4-19
“Constructing ExpressionSet Objects” on page 4-20

“Using Properties of an ExpressionSet Object” on page 4-21
“Using Methods of an ExpressionSet Object” on page 4-21

Overview of ExpressionSet Objects

You can store all microarray experiment data and information in one object by assembling the
following into an ExpressionSet object:

* One ExptData object containing expression values from a microarray experiment in one or more
DataMatrix objects

* One MetaData object containing sample metadata in two dataset arrays

* One MetaData object containing feature metadata in two dataset arrays

* One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component objects.

4-19

4 Microarray Analysis

ExpressionSet object

DataMatrix object DataMatrix object t DataMatrix object

dataset array

4-20

Each element (DataMatrix object) in the ExpressionSet object has an element name. Also, there is
always one DataMatrix object whose element name is Expressions.

An ExpressionSet object lets you store, manage, and subset the data from a microarray gene
expression experiment. An ExpressionSet object includes properties and methods that let you access,
retrieve, and change data, metadata, and other information about the microarray experiment. These
properties and methods are useful to view and analyze the data. For a list of the properties and
methods, see ExpressionSet class.

Constructing ExpressionSet Objects

Note The following procedure assumes you have executed the example code in the previous sections:

Representing All Data in an ExpressionSet Object

“Representing Expression Data Values in ExptData Objects” on page 4-9
* “Representing Sample and Feature Metadata in MetaData Objects” on page 4-12

“Representing Experiment Information in a MIAME Object” on page 4-16

1 Import the bioma package so that the ExpressionSet constructor function is available.

import bioma.*

2 Construct an ExpressionSet object from EDObj, an ExptData object, MDObj2, a MetaData object
containing sample variable information, and MIAMEObj, a MIAME object.
ESObj = ExpressionSet(EDObj, 'SData', MDObj2, 'EInfo', MIAMEObjl);

3 Display information about the ExpressionSet object, ESObj.

ESObj

ExpressionSet
Experiment Data: 500 features, 26 samples
Element names: Expressions
Sample Data:
Sample names: A, B, ...,Z (26 total)
Sample variable names and meta information:
Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
Source: The tissue source for RNA collection
Feature Data: none
Experiment Information: use 'exptInfo(obj)'

For complete information on constructing ExpressionSet objects, see ExpressionSet class.

Using Properties of an ExpressionSet Object

To access properties of an ExpressionSet object, use the following syntax:
objectname.propertyname

For example, to determine the number of samples in an ExpressionSet object:
ESObj.NSamples

ans =

26

Note Property names are case sensitive. For a list and description of all properties of an
ExpressionSet object, see ExpressionSet class.

Using Methods of an ExpressionSet Object

To use methods of an ExpressionSet object, use either of the following syntaxes:

4-21

4 Microarray Analysis

4-22

objectname.methodname

or

methodname (objectname)

For example, to retrieve the sample variable names from an ExpressionSet object:

ESObj .sampleVarNames
ans =
'Gender’ 'Age’ 'Type' 'Strain' 'Source'

To retrieve the experiment information contained in an ExpressionSet object:
exptInfo(ESObj)
ans =

Experiment description
Author name: Mika,,Silvennoinen
Riikka, ,KivelA=
Maarit, ,Lehti
Anna-Maria, ,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: XYZ Lab
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available Use the Abstract property.
Experiment Design: A 234 word summary is available Use the ExptDesign property.
Other notes:
[1x80 char]

Note For a complete list of methods of an ExpressionSet object, see ExpressionSet class.

Visualizing Microarray Images

Visualizing Microarray Images

In this section...

“Overview of the Mouse Example” on page 4-23
“Exploring the Microarray Data Set” on page 4-23
“Spatial Images of Microarray Data” on page 4-25
“Statistics of the Microarrays” on page 4-33
“Scatter Plots of Microarray Data” on page 4-34

Overview of the Mouse Example

This example looks at the various ways to visualize microarray data. The data comes from a
pharmacological model of Parkinson's disease (PD) using a mouse brain. The microarray data for this
example is from Brown, V.M., Ossadtchi, A., Khan, A.H., Yee, S., Lacan, G., Melega, W.P, Cherry, S.R.,
Leahy, R.M., and Smith, D.].; "Multiplex three dimensional brain gene expression mapping in a mouse
model of Parkinson's disease"; Genome Research 12(6): 868-884 (2002).

The microarray data used in this example is available in a Web supplement to the paper by Brown et
al. and in the file mouse alpd.gpr included with the Bioinformatics Toolbox software.

http://labs.pharmacology.ucla.edu/smithlab/genome multiplex/
The microarray data is also available on the Gene Expression Omnibus Web site at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR-formatted file mouse alpd.gpr contains the data for one of the microarrays used
in the study. This is data from voxel Al of the brain of a mouse in which a pharmacological model of
Parkinson's disease (PD) was induced using methamphetamine. The voxel sample was labeled with
Cy3 (green) and the control, RNA from a total (not voxelated) normal mouse brain, was labeled with
Cy5 (red). GPR formatted files provide a large amount of information about the array, including the
mean, median, and standard deviation of the foreground and background intensities of each spot at
the 635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength (the green, Cy3 channel).

Exploring the Microarray Data Set

This procedure illustrates how to import data from the Web into the MATLAB environment, using data
from a study about gene expression in mouse brains as an example. See “Overview of the Mouse
Example” on page 4-23.

1 Read data from a file into a MATLAB structure. For example, in the MATLAB Command Window,
type
pd = gprread('mouse_alpd.gpr')
Information about the structure displays in the MATLAB Command Window:
pd =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

4-23

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

4 Microarray Analysis

4-24

3

Columns:
Rows:

Names:

IDs:
ColumnNames:

Access the fields of a structure using StructureName
the field ColumnNames of the structure pd by typing

Indices:
Shape:

pd.ColumnNames

[9504x1 double]
[9504x1 double]
{9504x1 cell}
{9504x1 cell}
{38x1 cell}
[132x72 double]
[1x1 struct]

The column names are shown below.

ans

IXI

IYI

'Dia."

'F635 Median'
'F635 Mean'
'F635 SD'
'B635 Median'
'B635 Mean'
'B635 SD'

'% > B635+1SD'

'o

'F635 % Sat.'
'F532 Median'
'F532 Mean'
'F532 SD'
'B532 Median'
'B532 Mean'
'B532 SD'

'o

1o

'F532 % Sat.'

s > B635+2SD

s > B532+1SD'
s > B532+2SD'

'Ratio of Medians'
'Ratio of Means'
'Median of Ratios'
'Mean of Ratios'

'Ratios SD'
'Rgn Ratio'
'Rgn R2?'

'F Pixels'
'B Pixels'

'Sum of Medians'

'Sum of Means'
'Log Ratio'

'F635 Median - B635'
'F532 Median - B532'
'"F635 Mean - B635'
'F532 Mean - B532'

'Flags'

.FieldName. For example, you can access

Access the names of the genes. For example, to list the first 20 gene names, type

pd.Names (1:20)

A list of the first 20 gene names is displayed:

Visualizing Microarray Images

Spatial Images of Microarray Data

ans

'AA467053"
'AA388323"
'AA387625"
'AA474342'
'Myolb'
'AA473123"
'AA387579"
'AA387314"
"AA467571"
'Spop"
'AA547022"
'AI508784"
'AA413555"
'AA414733"

‘Sntal’
'AI414419'
'W14393"'
'W10596"

This procedure illustrates how to visualize microarray data by plotting image maps. The function
maimage can take a microarray data structure and create a pseudocolor image of the data arranged
in the same order as the spots on the array. In other words, maimage plots a spatial plot of the
microarray.

This procedure uses data from a study of gene expression in mouse brains. For a list of field names in
the MATLAB structure pd, see “Exploring the Microarray Data Set” on page 4-23.

1

figure
maimage(pd, 'F635 Median')

Plot the median values for the red channel. For example, to plot data from the field F635
Median, type

The MATLAB software plots an image showing the median pixel values for the foreground of the
red (Cyb) channel.

4-25

4 Microarray Analysis

FE35 Median « 10°

2 Plot the median values for the green channel. For example, to plot data from the field F532
Median, type

figure
maimage(pd, 'F532 Median')

The MATLAB software plots an image showing the median pixel values of the foreground of the
green (Cy3) channel.

4-26

Visualizing Microarray Images

F532 Median

Plot the median values for the red background. The field B635 Median shows the median values
for the background of the red channel.

figure
maimage(pd, 'B635 Median')

The MATLAB software plots an image for the background of the red channel. Notice the very
high background levels down the right side of the array.

4-27

4 Microarray Analysis

BE35 Median

2500

42000

41500

1000

&00

4 Plot the medial values for the green background. The field B532 Median shows the median
values for the background of the green channel.

figure
maimage(pd, 'B532 Median')

The MATLAB software plots an image for the background of the green channel.

4-28

Visualizing Microarray Images

B532 Median

400

- 350

- 300

- 250

200

150

The first array was for the Parkinson's disease model mouse. Now read in the data for the same
brain voxel but for the untreated control mouse. In this case, the voxel sample was labeled with
Cy3 and the control, total brain (not voxelated), was labeled with Cyb5.

wt = gprread('mouse alwt.gpr')
The MATLAB software creates a structure and displays information about the structure.

wt =
Header: [1x1 struct]
Data: [9504x38 double]
Blocks: [9504x1 double]
Columns: [9504x1 double]
Rows: [9504x1 double]
Names: {9504x1 cell}
IDs: {9504x1 cell}
ColumnNames: {38x1 cell}
Indices: [132x72 double]
Shape: [1x1 struct]

Use the function maimage to show pseudocolor images of the foreground and background. You
can use the function subplot to put all the plots onto one figure.

figure

subplot(2,2,1);
maimage(wt, 'F635 Median')
subplot(2,2,2);
maimage(wt, 'F532 Median')
subplot(2,2,3);
maimage(wt, 'B635 Median')
subplot(2,2,4);
maimage(wt, 'B532 Median')

4-29

4 Microarray Analysis

The MATLAB software plots the images.

FE35 Median TiM F&32 Median mnt

—= MW = mom F

BR35 Median B532 WMedian

2500
2000
1500
1000
500

7 Ifyou look at the scale for the background images, you will notice that the background levels are
much higher than those for the PD mouse and there appears to be something nonrandom
affecting the background of the Cy3 channel of this slide. Changing the colormap can sometimes
provide more insight into what is going on in pseudocolor plots. For more control over the color,
try the colormapeditor function.

colormap hot

The MATLAB software plots the images.

4-30

Visualizing Microarray Images

10

FE35 Median F532 Median 1t

= b W k= Moo=

BR35 Median B532 Median
10000

2500
2000
1500
1000
a00

The function maimage is a simple way to quickly create pseudocolor images of microarray data.

However if you want more control over plotting, it is easy to create your own plots using the
function imagesc.

First find the column number for the field of interest.
b532MedCol = find(strcmp(wt.ColumnNames, 'B532 Median'))
The MATLAB software displays:

b532MedCol =
16

Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);
Use the field Indices to index into the Data.

figure

subplot(1,2,1);
imagesc(b532Data(wt.Indices))
axis image

colorbar

title('B532 Median')

The MATLAB software plots the image.

4-31

4 Microarray Analysis

B532 Median

0 2500
40 2000
B0
1500
80
1000
100
120 &00

20 40 B0
11 Bound the intensities of the background plot to give more contrast in the image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

subplot(1,2,2);
imagesc(maskedData(wt.Indices))
axis image

colorbar

title('Enhanced B532 Median')

The MATLAB software plots the images.

4-32

Visualizing Microarray Images

B532 Median Enhanced B532 Median
___ _ B _

1500
20

1600
40

1400
G0

1200
Gl

1000 1000

100

120

20 40 B0 20 40 G0

Statistics of the Microarrays

This procedure illustrates how to visualize distributions in microarray data. You can use the function
maboxplot to look at the distribution of data in each of the blocks.

1 Inthe MATLAB Command Window, type

figure

subplot(2,1,1)

maboxplot(pd, 'F532 Median', 'title', 'Parkinson''s Disease Model Mouse')
subplot(2,1,2)

maboxplot(pd, 'B532 Median', 'title', 'Parkinson''s Disease Model Mouse')
figure

subplot(2,1,1)

maboxplot(wt, 'F532 Median', 'title', 'Untreated Mouse')

subplot(2,1,2)

maboxplot(wt, 'B532 Median', 'title', 'Untreated Mouse')

The MATLAB software plots the images.

4-33

4 Microarray Analysis

« 10t Parkinson's Disease Maodel Mouse
+ T T T T T T T
3r + + + + + _
5 < L o+ ot o+ F
o 2F 4 + + 4
= + T + + +
]
o
ol i i b dE i
L
n=E = = = BF =2 = =
1 1 1 1 1 1 1 1
1 2 3 4 5 B 7 g8
Block

Parkinson's Disease Model Mouse

' ¥
400t N |
5 + +
2 3} |
=
o EF £
3| & SN |
w200
- = = @ T =
1 1 1 | L | |
1 2 3 5 7 5
Ellnck
w10 Untreated Mouse
T T T T T + T T
6 + 4
c - +
= + + +
e % . + +
[}
1 Pdi il
S
1 2 3 4 5 B 7 3
Block

T
SEE PP B

o
1 2

B532 Median

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background intensities. Blocks
numbers 1, 3, 5, and 7 are on the left side of the arrays, and numbers 2, 4, 6, and 8 are on the
right side. The data must be normalized to remove this spatial bias.

Scatter Plots of Microarray Data

This procedure illustrates how to visualize expression levels in microarray data. There are two
columns in the microarray data structure labeled 'F635 Median - B635' and 'F532 Median -

4-34

Visualizing Microarray Images

B532"'. These columns are the differences between the median foreground and the median
background for the 635 nm channel and 532 nm channel respectively. These give a measure of the
actual expression levels, although since the data must first be normalized to remove spatial bias in
the background, you should be careful about using these values without further normalization.
However, in this example no normalization is performed.

1

Rather than working with data in a larger structure, it is often easier to extract the column
numbers and data into separate variables.

cy5DataCol = find(strcmp(wt.ColumnNames, 'F635 Median - B635'))
cy3DataCol = find(strcmp(wt.ColumnNames, 'F532 Median - B532'))
cy5Data = pd.Data(:,cy5DataCol);
cy3Data = pd.Data(:,cy3DataCol);

The MATLAB software displays:

cy5DataCol
34

cy3DataCol
35

A simple way to compare the two channels is with a loglog plot. The function maloglog is used
to do this. Points that are above the diagonal in this plot correspond to genes that have higher
expression levels in the Al voxel than in the brain as a whole.

figure
maloglog(cy5Data, cy3Data)
xlabel('F635 Median - B635 (Control)

")
ylabel('F532 Median - B532 (Voxel Al)'

)i
The MATLAB software displays the following messages and plots the images.

Warning: Zero values are ignored

(Type "warning off Bioinfo:MaloglogZeroValues" to suppress
this warning.)

Warning: Negative values are ignored.

(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress
this warning.)

4-35

4 Microarray Analysis

4-36

T T T T T T T T T TTTTg T T T T TTIT] T T T T T T T T T TTTY

—
=

N
T ——TTTT

—
=

e

T —TTTT

—
=

[
T — T

F532 Median - B332 Moxel Al)

10 10 10 10° 10
FE35 Median - BE3S (Contral)

Notice that this function gives some warnings about negative and zero elements. This is because
some of the values in the 'F635 Median - B635' and 'F532 Median - B532' columns are
zero or even less than zero. Spots where this happened might be bad spots or spots that failed to
hybridize. Points with positive, but very small, differences between foreground and background
should also be considered to be bad spots.

Disable the display of warnings by using the warning command. Although warnings can be
distracting, it is good practice to investigate why the warnings occurred rather than simply to
ignore them. There might be some systematic reason why they are bad.

warnState = warning; % First save the current warning
state.

% Now turn off the two warnings.
warning('off', 'Bioinfo:MaloglogZeroValues');
warning('off', 'Bioinfo:MaloglogNegativeValues');
figure
maloglog(cy5Data, cy3Data) Create the loglog plot
warning(warnState); Reset the warning state.
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel Al)');

[
“©
[

“©

The MATLAB software plots the image.

Visualizing Microarray Images

F532 Median - B332 Moxel Al)

1 Lyl il 1 L1l 1 L1l 1 L1111
10 10 10° 10° 10
FBE35 Median - BE3S (Control)

An alternative to simply ignoring or disabling the warnings is to remove the bad spots from the
data set. You can do this by finding points where either the red or green channel has values less
than or equal to a threshold value. For example, use a threshold value of 10.

threshold
badPoints

10;
(cy5Data <= threshold) | (cy3Data <= threshold);

The MATLAB software plots the image.

4-37

4 Microarray Analysis

4-38

—
]
N
T

—
[
[
T

F532 Median - B532 Moxel Al)
=

L+
i
10 -Fl'—l—-ib.-i._-h....l Ll T |

10" 10° 10° 10*

FE35 Median - BE3S (Caontral)

You can then remove these points and redraw the loglog plot.

cySData(badPoints) = []; cy3Data(badPoints) = [];
figure

maloglog(cy5Data, cy3Data)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel Al)');

The MATLAB software plots the image.

Visualizing Microarray Images

—
]
N
T

F532 Median - B532 Moxel Al)
=

—
[
[
T

L+
-;‘+-£.4._-h....| Ll Ll

10" 10° 10° 10
FE35 Median - BE3S (Caontral)

10 p

This plot shows the distribution of points but does not give any indication about which genes
correspond to which points.

Add gene labels to the plot. Because some of the data points have been removed, the
corresponding gene IDs must also be removed from the data set before you can use them. The
simplest way to do that is wt.IDs (~badPoints).

maloglog(cy5Data,cy3Data, ' labels',wt.IDs(~badPoints), ...
'factorlines',?2)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel Al)');

The MATLAB software plots the image.

4-39

4 Microarray Analysis

4-40

—
=
=

F&32 Median - B532 MWoxel AT)
=

—
=

-]|:|1 +-§. ho L L-

10 10 10° 10*
FE35 Median - BE3S (Caontrol)

Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are below the y = x line.
In fact, most of the points are below this line. Ideally the points should be evenly distributed on
either side of this line.

Normalize the points to evenly distribute them on either side of the line. Use the function
manorm to perform global mean normalization.

normcy5
normcy3

= mannorm(cy5Data);

= manorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly distributed about the
y = Xline.

figure

maloglog(normcy5,normcy3, ' labels',wt.IDs(~badPoints), ...
'factorlines',?2)

xlabel('F635 Median - B635 (Control)

")
ylabel('F532 Median - B532 (Voxel Al)'

)
The MATLAB software plots the image.

Visualizing Microarray Images

10

—_
[
=]

_L
D|
L

[

F532 Median - B532 (Woxel A1)

—
=

1|:|' I-.,J"-.......| Lol Lo vl T |
10° 107* 10" 10" 10"

FB35 Median - BE3S (Control)

The function mairplot is used to create an Intensity vs. Ratio plot for the normalized data. This
function works in the same way as the function maloglog.

figure
mairplot(normcy5,normcy3, 'labels',wt.IDs(~badPoints), ...
'factorlines',?2)

The MATLAB software plots the image.

4-41

4 Microarray Analysis

1|:|_ T T T T

10

Ratin

10

1 D" 1 1 1 1
10" 10 10" 10" 10° 10*

Intensity

10 You can click the points in this plot to see the name of the gene associated with the plot.

4-42

Phylogenetic Analysis

5 Phylogenetic Analysis

Using the Phylogenetic Tree App

5-2

In this section...

“Overview of the Phylogenetic Tree App” on page 5-2
“Opening the Phylogenetic Tree App” on page 5-2
“File Menu” on page 5-3

“Tools Menu” on page 5-11

“Window Menu” on page 5-17

“Help Menu” on page 5-18

Overview of the Phylogenetic Tree App

The Phylogenetic Tree app allows you to view, edit, format, and explore phylogenetic tree data. With
this app you can prune, reorder, rename branches, and explore distances. You can also open or save
Newick or ClustalW tree formatted files. The following sections give a description of menu commands
and features for creating publishable tree figures.

Opening the Phylogenetic Tree App

This section illustrates how to draw a phylogenetic tree from data in a phytree object or a
previously saved file.

The Phylogenetic Tree app can read data from Newick and ClustalW tree formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002. tree as an example. The
data was retrieved from the protein family (PFAM) Web database and saved to a file using the
accession number PFO0002 and the function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree data in the file
pf00002. tree, type

tr = phytreeread('pf00002.tree')
The MATLAB software creates a phytree object.

Phylogenetic tree object with 33 leaves (32 branches)
2 View the phylogenetic tree using the app.

phytreeviewer(tr)

Alternatively, click Phylogenetic Tree on the Apps tab.

Using the Phylogenetic Tree App

Phylogenetic Tree 1

L= | 5

File Tools Window Help
+\ _\ @‘r? @E é @ TC 1i2

1

4
Uﬂ[l oo UUUUU[lUUUUUUUUUUUUUm

o 005 01

014

02 025 03 035 04

Q9YHCE_RANRIN 26-382
WIPR1_RATM 40-397
YIPR_CARALIMO0-359
WIPRZ_HUMARNM 23-382
PACR_MOLUISEM 50-435
SCTR_RABIT/35-391
O737BE_CARALIM 33-390
GHRHRE_MOLUISEM 26-383
PTHRZ2_HUMAMNM 41-420
PTHR1_HUMANM E4-466
GLPZR_RATM 75-443
GLRE_HLUIMANM 35-407
GIPFR_HUMARNI134-399
GLP1R_RATM41-409
DIHR_ACHDOM 30-393
DIHR_MAMSEMR3-351
CRFR2_=EMLAM15-368
CRFR1_RATM16-370
CALRL_HURAMIT 38-391
CALCR_RATIMA45-4345
SEB1_CAEELMG4-436
CELR1_MOUSES2480-2723
CELR3_RATI2534-2777
CD87_MOUSEMSZE-77T
CD97_HUMAMMS44-793
EmR1_HUMAMNIS9S-251
Q17405_CAEEL/S48-799
0a7802_BOVIMNITES-1016
LPHM3_BOMIMNI942-1198
BAIZ_HUMAMNIGT F-1197
BAIT _HUMANS44-1191
GPRE4_HUMANIGZ5-386
MTH_DROMEZ211-430

File Menu

The File menu includes the standard commands for opening and closing a file, and it includes

commands to use phytree object data from the MATLAB Workspace. The File menu commands are

shown below.

5 Phylogenetic Analysis

~
u Phylogenetic Tree 1

File | Tools Window Help

Mew Viewer...
Open...
Import frem Workspace...

Open Original in New Yiewer

Save As...

Print to Figure »
Export to New Viewer +
Export to Workspace »
Export Setup...

Print Preview...

Print... Ctrl+P
Exit

New Viewer Command

Use the New Viewer command to open tree data from a file into a second Phylogenetic Tree viewer.

1 From the File menu, select New Viewer.

The Open A Phylogenetic Tree dialog box opens.

|'\

rn Open A Phylogen... | = 2

— Choose tree source:

@ Import from workspace
Select phytree object:

(") Open phylogenetic tree file
File name:

Browse...

ok | [conce]

L ~

2 Choose the source for a tree.

Using the Phylogenetic Tree App

* MATLAB Workspace — Select the Import from Workspace options, and then select a
phytree object from the list.

* File — Select the Open phylogenetic tree file option, click the Browse button, select a
directory, select a file with the extension .tree, and then click Open. The toolbox uses the
file extension . tree for Newick-formatted files, but you can use any Newick-formatted file
with any extension.

= Mew folder
Mame

demaosearch
htrnl
ja
|| pfO0002.tree
] pﬁﬂﬂﬂﬂEfukree

A second Phylogenetic Tree viewer opens with tree data from the selected file.
Open Command

Use the Open command to read tree data from a Newick-formatted file and display that data in the
app.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick-formatted file, and then click Open. The app uses the file
extension . tree for Newick-formatted files, but you can use any Newick-formatted file with any
extension.

The app replaces the current tree data with data from the selected file.
Import from Workspace Command

Use the Import from Workspace command to read tree data from a phytree object in the MATLAB
Workspace and display the data using the app.

1 From the File menu, select Import from Workspace.

The Get Phytree Object dialog box opens.

3-5

5 Phylogenetic Analysis

I R
Get.. [= 2|
Select phytree object:
tr -
| Import | | Cancel |
L _

From the list, select a phytree object in the MATLAB Workspace.
Click the Import button.

The app replaces the current tree data with data from the selected object.
Open Original in New Viewer

There may be times when you make changes that you would like to undo. The Phylogenetic Tree
app does not have an undo command, but you can get back to the original tree you started viewing
with the Open Original in New Viewer command.

From the File menu, select Open Original in New Viewer.
A new Phylogenetic Tree viewer opens with the original tree.
Save As Command

After you create a phytree object or prune a tree from existing data, you can save the resulting tree
in a Newick-formatted file. The sequence data used to create the phytree object is not saved with
the tree.

1 From the File menu, select Save As.

The Save Phylogenetic tree as dialog box opens.

2 In the Filename box, enter the name of a file. The toolbox uses the file extension . tree for
Newick-formatted files, but you can use any file extension.

3 Click Save.

The app saves tree data without the deleted branches, and it saves changes to branch and leaf
names. Formatting changes such as branch rotations, collapsed branches, and zoom settings are
not saved in the file.

Export to New Viewer Command

Because some of the Phylogenetic Tree viewer commands cannot be undone (for example, the Prune
command), you might want to make a copy of your tree before trying a command. At other times, you

Using the Phylogenetic Tree App

might want to compare two views of the same tree, and copying a tree to a new tool window allows
you to make changes to both tree views independently .

1 Select File > Export to New Viewer, and then select either With Hidden Nodes or Only
Displayed.
A new Phylogenetic Tree viewer opens with a copy of the tree.

2 Use the new figure to continue your analysis.

Export to Workspace Command

The Phylogenetic Tree app can open Newick-formatted files with tree data. However, it does not
create a phytree object in the MATLAB Workspace. If you want to programmatically explore
phylogenetic trees, you need to use the Export to Workspace command.

1 Select File > Export to Workspace, and then select either With Hidden Nodes or Only
Displayed.
The Export to Workspace dialog box opens.

2 In the Workspace variable name box, enter the name for your phylogenetic tree data. For
example, enter MyTree.

r Export t| = | |-‘-‘3-]1

Workspace variable name 7

MyTree

I OK H Cancel |

e, A

3 Click OK.

The app creates a phytree object in the MATLAB Workspace.
Print to Figure Command

After you have explored the relationships between branches and leaves in your tree, you can copy the
tree to a MATLAB Figure window. Using a Figure window lets you use all the features for annotating,
changing font characteristics, and getting your figure ready for publication. Also, from the Figure
window, you can save an image of the tree as it was displayed in the Phylogenetic Tree app.

1 From the File menu, select Print to Figure, and then select either With Hidden Nodes or
Only Displayed.

The Print Phylogenetic Tree to Figure dialog box opens.

5-7

5 Phylogenetic Analysis

2

) Print Phylogenetic Tree to Figure

— Rendering Type
v Square

[Angular

" Radial

[EgualAngle

{~ EquskDaylight

— Dizplay Lakels

I_ Branch Modes
[T Leaf Modes

IF Terminal Modes

=101 x|

Frint |

Cancel |

Select one of the Rendering Types.

Rendering Type

Description

'square' (default)

o

o

o

ooooaoan

o

o

o

o

o

|

|

oo

Using the Phylogenetic Tree App

Rendering Type

Description

'angular'

'radial'

5-9

5 Phylogenetic Analysis

5-10

Rendering Type Description

'equalangle’

Tip This rendering type hides the significance of the root node
and emphasizes clusters, thereby making it useful for visually
assessing clusters and detecting outliers.

'equaldaylight’

Tip This rendering type hides the significance of the root node
and emphasizes clusters, thereby making it useful for visually
assessing clusters and detecting outliers.

3 Select the Display Labels you want on your figure. You can select from all to none of the
options.

* Branch Nodes — Display branch node names on the figure.

* Leaf Nodes — Display leaf node names on the figure.

* Terminal Nodes — Display terminal node names on the right border.
4 Click the Print button.

A new Figure window opens with the characteristics you selected.
Print Preview Command

When you print from the Phylogenetic Tree app or a MATLAB Figure window (with a tree published
from the viewer), you can specify setup options for printing a tree.

Using the Phylogenetic Tree App

1 From the File menu, select Print Preview.

The Print Preview window opens, which you can use to select page formatting options.

n Print Preview l =SRRCE X
StyleSheet | default - Savedise Zoom I Print J [Refresh “ Help J [Close
- 0 2 4 6 8
Layout | Llnes.f’Tartl Color | Advanr_ed| | T TN T 0
Placement
1 Auto (Actual Size, Centered)
@ Use manual size and position
Left 02515 0
Top: 25005 Uy
Width: 800t 2 H
= =
Height: 6.001= IH
I Use defaults J I Fill page I 4H
I Fix aspect ratio I I Center I g :
5
Paper H
Format: | USLetter - | g
Width: 85015 g m
Height: 11.0062
10
Units: Crientation 1y
@ Inches @ Portrait
) Centimeters _) Landscape
") Points) Rotated =
| [

2 Select the page formatting options and values you want, and then click Print.
Print Command

Use the Print command to make a copy of your phylogenetic tree after you use the Print Preview
command to select formatting options.

1 From the File menu, select Print.

The Print dialog box opens.
2 From the Name list, select a printer, and then click OK.

Tools Menu

Use the Tools menu to:

* Explore branch paths

* Rotate branches

* Find, rename, hide, and prune branches and leaves.

The Tools menu and toolbar contain most of the commands specific to trees and phylogenetic

analysis. Use these commands and modes to edit and format your tree interactively. The Tools menu
commands are:

5-11

5 Phylogenetic Analysis

5-12

Phylogenetic Tree 1

File

+

G

Tools

Inspect
Collapse/Expand
Rotate Branch
Rename

Prune

Zoom In

Zoom Cut

Pan

Select

Find Leaf/Branch...
Collapse Selected
Expand Selected
Expand All

Fit to Window
Reset View
Options

Inspect Mode

Viewing a phylogenetic tree in the Phylogenetic Tree app provides a rough idea of how closely
related two sequences are. However, to see exactly how closely related two sequences are, measure
the distance of the path between them. Use the Inspect command to display and measure the path

between two sequences.

1

Select Tools > Inspect, or from the toolbar, click the Inspect Tool Mode icon %I

The app is set to inspect mode.

Click a branch or leaf node (selected node), and then hover your cursor over another branch or
leaf node (current node).

The app highlights the path between the two nodes and displays the path length in the pop-up
window. The path length is the patristic distance calculated by the seqpdist function.

1%

Window Help

ELRG_FA LTI 20]
CDa7_MOUSEMSZE-TTT

T W IsARIE A A T2

a Path length: 055444

o Selected node: EMRT_HUMANS93-551
————————n Current node: COEY_MOUSESSIE-77T

Using the Phylogenetic Tree App

Collapse and Expand Branch Mode

Some trees have thousands of leaf and branch nodes. Displaying all the nodes can create an
unreadable tree diagram. By collapsing some branches, you can better see the relationships between
the remaining nodes.

1

Select Tools > Collapse/Expand, or from the toolbar, click the Collapse/Expand Brand Mode
icon £|

The app is set to collapse/expand mode.

Point to a branch.

The paths, branch nodes, and leaf nodes below the selected branch appear in gray, indicating you
selected them to collapse (hide from view).

I_H I_‘

Branch 11 (3 samples) _% &
GLP1 RATA41-409

GIPR HUR AR 34-309

GLR HUMARAIS-A07

I 8
Click the branch node.

gooooooo

The app hides the display of paths, branch nodes, and leaf nodes below the selected branch.
However, it does not remove the data.

i

To expand a collapsed branch, click it or select Tools > Reset View.

gooo o

Tip After collapsing nodes, you can redraw the tree by selecting Tools > Fit to Window.

Rotate Branch Mode

A phylogenetic tree is initially created by pairing the two most similar sequences and then adding the
remaining sequences in a decreasing order of similarity. You can rotate branches to emphasize the
direction of evolution.

1

Select Tools > Rotate Branch, or from the toolbar, click the Rotate Branch Mode icon @I

The app is set to rotate branch mode.
Point to a branch node.

[
Branch 11 (3 samples) _t% &
GLP1T RAT141-409
GIPR HURMAN34-3539
GLR HUR AN 35-407

ooooooo

5-13

5 Phylogenetic Analysis

5-14

3 Click the branch node.

I ®
Branch 11 (3 samples) _t\}
GIPR HUMAMNA34-359
GLR HUMAN/138-407 ——®%

GLP1 RAT/141-409

|

| e [

oooooood

|
The branch and leaf nodes below the selected branch node rotate 180 degrees around the branch
node.

4 To undo the rotation, simply click the branch node again.
Rename Leaf or Branch Mode

The Phylogenetic Tree app takes the node names from a phytree object and creates numbered
branch names starting with Branch 1. You can edit any of the leaf or branch names.

1 T
Select Tools > Rename, or from the toolbar, click the Rename Leaf/Branch Mode icon £I
The app is set to rename mode.

2 Click a branch or leaf node.

L | L I WL P R I L N .

Branch 14 SRR HURMAM38-391
1 ALR BAT145-435

CALR PIG/146-415
CREFE1T RATA1B-370
CRFZ XEMNLAM15-368

_|
%
— %

A text box opens with the current name of the node.

oooc

3 In the text box, edit or enter a new name.

i 1 e 5 I) LY P e P
—] CALR SRR HUMARN138-291

— & u 4 LALR RAT/145-435
o - CALR PIG/146-415
o {CRF1 RAT/16-370

0 1 CREZXENLA/TTS-368

4 To accept your changes and close the text box, click outside of the text box. To save your
changes, select File > Save As.

Prune (Delete) Leaf or Branch Mode

Your tree can contain leaves that are far outside the phylogeny, or it can have duplicate leaves that
you want to remove.

1 Select Tools > Prune, or from the toolbar, click the Prune (delete) Leaf/Branch Mode icon
2

= .

The app is set to prune mode.
2 Point to a branch or leaf node.

Using the Phylogenetic Tree App

MTH DROMES11-480

loooooon

*

For a leaf node, the branch line connected to the leaf appears in gray. For a branch node, the
branch lines below the node appear in gray.

Note If you delete nodes (branches or leaves), you cannot undo the changes. The Phylogenetic
Tree app does not have an Undo command.

3 Click the branch or leaf node.

The tool removes the branch from the figure and rearranges the other nodes to balance the tree
structure. It does not recalculate the phylogeny.

Tip After pruning nodes, you can redraw the tree by selecting Tools > Fit to Window.

Zoom In, Zoom Out, and Pan Commands

The Zoom and Pan commands are the standard controls for resizing and moving the screen in any
MATLAB Figure window.

" &
Select Tools > Zoom In, or from the toolbar, click the Zoom In icon .

The app activates zoom in mode and changes the cursor to a magnifying glass.

2 Place the cursor over the section of the tree diagram you want to enlarge and then click.

The tree diagram doubles its size.

o

@ K

—t

From the toolbar click the Pan icon ﬂl

5-15

5 Phylogenetic Analysis

5-16

4 Move the cursor over the tree diagram, left-click, and drag the diagram to the location you want
to view.

Tip After zooming and panning, you can reset the tree to its original view, by selecting Tools >
Reset View.

Select Submenu

Select a single branch or leaf node by clicking it. Select multiple branch or leaf nodes by Shift-
clicking the nodes, or click-dragging to draw a box around nodes.

Use the Select submenu to select specific branch and leaf nodes based on different criteria.

* Select By Distance — Displays a slider bar at the top of the window, which you slide to specify a
distance threshold. Nodes whose distance from the selected node are below this threshold appear
in red. Nodes whose distance from the selected node are above this threshold appear in blue.

* Select Common Ancestor — For all selected nodes, highlights the closest common ancestor
branch node in red.

* Select Leaves — If one or more nodes are selected, highlights the nodes that are leaf nodes in
red. If no nodes are selected, highlights all leaf nodes in red

* Propagate Selection — For all selected nodes, highlights the descendant nodes in red.

* Swap Selection — Clears all selected nodes and selects all deselected nodes.

After selecting nodes using one of the previous commands, hide and show the nodes using the
following commands:

* Collapse Selected
* Expand Selected
* Expand All

Clear all selected nodes by clicking anywhere else in the Phylogenetic Tree app.
Find Leaf or Branch Command

Phylogenetic trees can have thousands of leaves and branches, and finding a specific node can be
difficult. Use the Find Leaf/Branch command to locate a node using its name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

Find Leaf/Branch _)i[

Feqular Expression to match ?

)74 Cancel | H

Using the Phylogenetic Tree App

2 Inthe Regular Expression to match box, enter a name or partial name of a branch or leaf
node.

3 Click OK.
The branch or leaf nodes that match the expression appear in red.

After selecting nodes using the Find Leaf/Branch command, you can hide and show the nodes using
the following commands:

* Collapse Selected
* Expand Selected
+ Expand All

Collapse Selected, Expand Selected, and Expand All Commands

When you select nodes, either manually or using the previous commands, you can then collapse them
by selecting Tools > Collapse Selected.

The data for branches and leaves that you hide using the Collapse/Expand or Collapse Selected
command are not removed from the tree. You can display selected or all hidden data using the
Expand Selected or Expand All command.

Fit to Window Command

After you hide nodes with the collapse commands, or delete nodes with the Prune command, there
can be extra space in the tree diagram. Use the Fit to Window command to redraw the tree diagram
to fill the entire Figure window.

Select Tools > Fit to Window.

Reset View Command

Use the Reset View command to remove formatting changes such as collapsed branches and zooms.
Select Tools > Reset View.

Options Submenu

Use the Options command to select the behavior for the zoom and pan modes.

* Unconstrained Zoom — Allow zooming in both horizontal and vertical directions.
* Horizontal Zoom — Restrict zooming to the horizontal direction.

* Vertical Zoom (default) — Restrict zooming to the vertical direction.

* Unconstrained Pan — Allow panning in both horizontal and vertical directions.

* Horizontal Pan — Restrict panning to the horizontal direction.

* Vertical Pan (default) — Restrict panning to the vertical direction.

Window Menu

This section illustrates how to switch to any open window.

5-17

5 Phylogenetic Analysis

5-18

The Window menu is standard on MATLAB interfaces and Figure windows. Use this menu to select
any opened window.

Help Menu

This section illustrates how to select quick links to the Bioinformatics Toolbox documentation for
phylogenetic analysis functions, tutorials, and the Phylogenetic Tree app reference.

Use the Help menu to select quick links to the Bioinformatics Toolbox documentation for
phylogenetic analysis functions, tutorials, and the phytreeviewer reference.

	Getting Started
	Bioinformatics Toolbox Product Description
	Key Features

	Product Overview
	Features
	Expected Users

	Data Formats and Databases
	Sequence Alignments
	Sequence Utilities and Statistics
	Protein Property Analysis
	Phylogenetic Analysis
	Microarray Data Analysis Tools
	Microarray Data Storage
	Mass Spectrometry Data Analysis
	Graph Theory Functions
	Graph Visualization
	Statistical Learning and Visualization
	Prototyping and Development Environment
	Data Visualization
	Exchange Bioinformatics Data Between Excel and MATLAB
	Using Excel and MATLAB Together
	About the Example
	Before Running the Example
	Running the Example for the Entire Data Set
	Editing Formulas to Run the Example on a Subset of the Data
	Using the Spreadsheet Link product to Interact With the Data in MATLAB

	Get Information from Web Database
	What Are get Functions?
	Creating the getpubmed Function

	High-Throughput Sequence Analysis
	Work with Next-Generation Sequencing Data
	Overview
	What Files Can You Access?
	Before You Begin
	Create a BioIndexedFile Object to Access Your Source File
	Determine the Number of Entries Indexed By a BioIndexedFile Object
	Retrieve Entries from Your Source File
	Read Entries from Your Source File

	Manage Sequence Read Data in Objects
	Overview
	Represent Sequence and Quality Data in a BioRead Object
	Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object
	Retrieve Information from a BioRead or BioMap Object
	Set Information in a BioRead or BioMap Object
	Determine Coverage of a Reference Sequence
	Construct Sequence Alignments to a Reference Sequence
	Filter Read Sequences Using SAM Flags

	Store and Manage Feature Annotations in Objects
	Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object
	Construct an Annotation Object
	Retrieve General Information from an Annotation Object
	Access Data in an Annotation Object
	Use Feature Annotations with Sequence Read Data

	Visualize and Investigate Sequence Read Alignments
	When to Use the NGS Browser to Visualize and Investigate Data
	Open the NGS Browser
	Import Data into the NGS Browser
	Zoom and Pan to a Specific Region of the Alignment
	View Coverage of the Reference Sequence
	View the Pileup View of Short Reads
	Compare Alignments of Multiple Data Sets
	View Location, Quality Scores, and Mapping Information
	Flag Reads
	Evaluate and Flag Mismatches
	View Insertions and Deletions
	View Feature Annotations
	Print and Export the Browser Image

	Count Features from NGS Reads
	Identifying Differentially Expressed Genes from RNA-Seq Data
	Visualize NGS Data Using Genomics Viewer App
	Open the App
	Add Tracks by Importing Data
	Visualize Single Nucleotide Variation in Cytochrome P450

	Sequence Analysis
	Exploring a Nucleotide Sequence Using Command Line
	Overview of Example
	Searching the Web for Sequence Information
	Reading Sequence Information from the Web
	Determining Nucleotide Composition
	Determining Codon Composition
	Open Reading Frames
	Amino Acid Conversion and Composition

	Exploring a Nucleotide Sequence Using the Sequence Viewer App
	Overview of the Sequence Viewer
	Importing a Sequence into the Sequence Viewer
	Viewing Nucleotide Sequence Information
	Searching for Words
	Exploring Open Reading Frames
	Closing the Sequence Viewer

	Explore a Protein Sequence Using the Sequence Viewer App
	Overview of the Sequence Viewer
	Viewing Amino Acid Sequence Statistics
	Closing the Sequence Viewer
	References

	Compare Sequences Using Sequence Alignment Algorithms
	Overview of Example
	Find a Model Organism to Study
	Retrieve Sequence Information from a Public Database
	Search a Public Database for Related Genes
	Locate Protein Coding Sequences
	Compare Amino Acid Sequences

	View and Align Multiple Sequences
	Overview of the Sequence Alignment App
	Visualize Multiple Sequence Alignment
	Adjust Sequence Alignments Manually
	Rearrange Rows
	Generate Phylogenetic Tree from Aligned Sequences

	Microarray Analysis
	Managing Gene Expression Data in Objects
	Representing Expression Data Values in DataMatrix Objects
	Overview of DataMatrix Objects
	Constructing DataMatrix Objects
	Getting and Setting Properties of a DataMatrix Object
	Accessing Data in DataMatrix Objects

	Representing Expression Data Values in ExptData Objects
	Overview of ExptData Objects
	Constructing ExptData Objects
	Using Properties of an ExptData Object
	Using Methods of an ExptData Object
	References

	Representing Sample and Feature Metadata in MetaData Objects
	Overview of MetaData Objects
	Constructing MetaData Objects
	Using Properties of a MetaData Object
	Using Methods of a MetaData Object

	Representing Experiment Information in a MIAME Object
	Overview of MIAME Objects
	Constructing MIAME Objects
	Using Properties of a MIAME Object
	Using Methods of a MIAME Object

	Representing All Data in an ExpressionSet Object
	Overview of ExpressionSet Objects
	Constructing ExpressionSet Objects
	Using Properties of an ExpressionSet Object
	Using Methods of an ExpressionSet Object

	Visualizing Microarray Images
	Overview of the Mouse Example
	Exploring the Microarray Data Set
	Spatial Images of Microarray Data
	Statistics of the Microarrays
	Scatter Plots of Microarray Data

	Phylogenetic Analysis
	Using the Phylogenetic Tree App
	Overview of the Phylogenetic Tree App
	Opening the Phylogenetic Tree App
	File Menu
	Tools Menu
	Window Menu
	Help Menu

